
Freedom Respecting Technology Definition
bringing about the Next Generation of Open Source, Free Software, Open
Knowledge, Open Culture, and Technological Freedom

(obsolete) version 2.5.0 | 2024-03-25 | check here for newer versions

note: This is (generated via ebook-convert from) a single handwritten
HTML file without any other embedded resources and can thus
fully/cleanly be saved as a self contained unit for offline reading. It's rather
annoying that some mobile browsers generally don't have web page saving
functionality but this is a defect with them not WHATWG standard HTML
as an open file format. (Laptop browsers aren't much better because if a
page references say images it generally gets saved as a "blah.html" file and
a "blah_files" folder instead of both being wrapped by a folder that can then
later be moved/copied as one unit and still benefit from it's subcomponents
being easily accessed as desired.) Copy and share as widely as possible but
don't make modifications without consulting the authors first.

author information

initiator and primary author:
Georgiy Treyvus, makesourcenotcode the_swirly_thing gmail le_pointer
com

reviewers, coauthors, supporters, and other helpers:
{insert (nick)names, pseudonyms, and/or email addresses as desired by
contributors here}

contents

intended audience and compact summary
motivations
main thesis
core FRT(Freedom Respecting Technology) requirements
concluding remarks

https://makesourcenotcode.github.io/freedom_respecting_technology.html#frtd
https://manual.calibre-ebook.com/generated/en/ebook-convert.html
https://en.wikipedia.org/wiki/HTML
https://html.spec.whatwg.org/
https://en.wikipedia.org/wiki/Open_file_format

intended audience and compact summary

This document is for those that care about the sharing of knowledge in an
open accessible manner. Not just theoretically, but practically.

Truly open knowledge and true technological freedom fundamentally
require trivial ease in fully and cleanly copying allegedly open digital works
in forms useful for offline study.

For example, in the case of software, the overly narrow focus on easy
access to the main program sources isn't enough. Trivial access to offline
documentation, for any official documentation that may exist, is critical.

Needing a constant network connection to properly study something
claiming to be open isn't freedom. Needing the site hosting an allegedly
open work to always be up isn't freedom.

We think system wide in terms of the full Open Knowledge Set associated
with any given technology. We strongly believe withholding any parts of
the OKS from easy offline study is fundamentally no better than
withholding any part of the main source material.

It's time for Open Source and Open Knowledge to truly be for everyone, not
just well off people with reliable Internet connections.

motivations

Technology in various forms is influencing if not outright controlling ever
more aspects of our lives with no signs of slowing down. Both on an
individual and collective/collaborative/community level we must
understand and control the technology we use or it will control us. The
latter may happen by itself in the event of strong artificial intelligence.
More likely it may happen by the hands of the few developers who truly
understand it and who have a depressingly high probability of being
employed/bribed/coerced by unethical corporations and/or regimes.
However the latter scenario comes about it's absolutely unacceptable.

Thankfully we are not alone in our sentiments here. Long before most of
this document's authors were born many people started work in this
direction. An example is Richard Stallman who formalized these sentiments
as well as certain good cultural tendencies he'd seen with regards to the
sharing of knowledge which were slowly disappearing into what became
the GNU Project and the Free Software movement more generally. This
also inspired other movements of free (as in freedom) culture/technology
including but not limited to Open Source and Creative Commons. All in all
these movements have done a tremendous amount of good and are huge
steps in the right direction. Ultimately it is on the shoulders of these giants
upon which we stand as we write this document in an attempt to progress
yet further.

Herein we attempt to fully articulate and address longstanding and growing
frustrations we've been feeling for years if not decades. These originate
mainly with regards to Open Source Software, to a lesser extent Free
Software, and extend well beyond just software into technology more
generally.

While many FOSS(Free and Open Source Software) projects are often
made in good faith and we often can't express in words how deeply we
appreciate some of them the fact is that the vast majority of (sometimes
very promising) FOSS projects fail badly to properly deliver on certain
critical aspects of openness, accessibility, and technological freedom. In
spite of being fully compliant with things like the GPL(GNU General
Public License), FSD(Free Software Definition), and/or OSD(Open Source
Definition) thus being theoretically free many FOSS projects fail in making
technological freedom practical. Unfortunately there are a lot of mostly
artificial barriers that (usually unintentionally) stand in the way of many
interested people (including very skilled competent ones) exercising the
crucial freedoms of using, studying, understanding, modifying, copying,
(re)distributing, further developing, and contributing back to FOSS projects
in a truly free, autonomous, and self sufficient manner.

Thus we seek to develop this FRTD(Freedom Respecting Technology
Definition) driven by the principles of radical understandability, radical

https://en.wikipedia.org/wiki/Richard_Stallman
https://stallman.org/
https://en.wikipedia.org/wiki/GNU_Project
https://www.gnu.org/gnu/thegnuproject.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_model
https://opensource.org/
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated

discoverability, radical accessibility, radical open knowledge, and radical
self sufficiency. (A crucial consequence of that last bit is that it can, should,
and hopefully ultimately will also lead to healthier and significantly more
resilient individuals and local communities.)

We aim to carefully study, formalize, and explicitly forbid as many of the
devastating failure modes we've seen in FOSS projects at both the user and
developer level as we can. (We aim to eliminate the mostly artificial
boundaries between users and developers.) We aim to carefully study,
highlight, formalize, and explicitly require at least the bare minimum set of
practices which some FOSS projects have engaged in (even if only
accidentally in some cases) that have given end users real practical
technological freedom. Though we won't be able to do it perfectly we aim
to have something that as much as possible formalizes and captures the very
essence of technological freedom. We aim for something which can guide
ourselves and other well meaning developers of technologies including but
not limited to software, firmware, hardware, protocols, technical
specifications, algorithms, scientific research, knowledge, media
(informative and artistic), and combinations thereof(which is what most
things are) towards building a truly free and healthy world.

While this document is intended primarily to address problems with Free
Software and Open Source Software a lot of the issues discussed here
pertain to all software and to technology more generally. Thus we hope this
will be read by, of interest to, and acted upon by a wide and diverse
audience. We feel that this document can help even developers of closed
source software make many aspects of it better as well as provide good food
for thought to other related source available movements such as Fair
Source. This is because as one often hears freedom is not free whether the
cost comes in the form of effort, labor, time, money, or something else. For
a technology to support freedom even partially let alone completely it must
have certain qualities. Not trying hard to take away people's technological
freedoms is not enough. Active steps must be taken to add qualities that
create and preserve freedom. Some side effects of technologies having
some of these qualities are better user and developer experiences as well as
better internal design.

https://en.wikipedia.org/wiki/Source-available_software
https://fair.io/
https://fair.io/

In addition to this definition document, which itself is almost an
FRT(Freedom Respecting Technology), we intend to release a few other
FRTD compliant technologies to the public both for their personal utility
and more crucially for peer review.

These projects are intended to demonstrate and capture the spirit of FRTs in
ways that even the best possible version of this document will likely fail to.
We want people to feel in a hands on manner the difference between FRTs
and typical FOSS. We want people to feel it viscerally. These example
projects will almost certainly come in the form of software as things like
hardware for example are largely outside of our current areas of expertise.
Help realizing FRTs in other mediums is enthusiastically welcomed and
would be deeply appreciated. So please get in touch!

We want to test the approachability, discoverability, learnability,
accessibility, and understandability of these sample projects on a wide
variety of people from both the user and developer perspectives. We want to
assure that skilled developers aren't adversely affected by any of the
requirements of the FRTD. We want to see if novice developers find the
projects approachable for hacking on. We want to see how quickly and
easily a random user can cross into developer territory to modify a given
FRT to be more in line with their desires. Again being able to do this in
theory is not enough. It must be practical.

Finally we hope that this definition and the technologies we release will be
the beginning of a movement at least as large and successful as FOSS was.
We dream of a world where people can combine FRTs realized in various
mediums like hardware, software, etc into full solutions to their
technological needs and wants.

main thesis

Failure of FOSS projects to provide the crucial technological freedoms we
seek stems from their failure to be reasonably understandable to people
(even sometimes ones with significant expertise) in a reasonably self
sufficient manner. Understandability and self sufficiency are the two
absolutely necessary prerequisites for technological freedom. Hence we

examine what it takes to provide both.

Open Source is an absolutely necessary but often insufficient subset of
Open Knowledge which is the real goal and the key to understandability.
The crucial but still ultimately narrow focus on source access often distracts
us from focusing holistically on maximum possible access to the full Open
Knowledge Set associated with a technology which is what truly matters.

What do parts of the OKS(Open Knowledge Set) look like? In the worst
case they can be a little abstract and even inaccessible/intangible. For
example in the case of software an important such element of the OKS is
certain practical educational information exposed by the UI(user interface)
in the environments where that software can be run. Other OKS parts are
much more straightforward. Another even more important element is both
the built and source forms of the Help Information Set a subset of the OKS
consisting of things like any officially written documentation, diagrams,
instructional/demonstratory videos, and so forth that may exist. Indeed a lot
of what this document will focus on is this HIS(Help Information Set),
though it's critical always to think system wide in terms of the whole OKS.

Most systems are useless without the HIS component of the OKS from both
a user and developer perspective. Depending on how self describing the
components of the technology/system in question are the size of the HIS
will vary. Sometimes it can reasonably be nonexistent given the other
elements of the OKS. However for all but the simplest technologies the HIS
will be necessary. Happily many (though not a majority of) FOSS projects
do a somewhat decent job of providing the HIS in circumstances where
most reasonable people would deem it necessary and/or desirable. The main
issue we have is with how the HIS is not accessible in a reasonably self
sufficient manner.

Ultimately understandability comes from the full OKS being as ubiquitous
and easy to access and cleanly copy (with little to no extra cruft) as
humanely possible in both built and source forms. At the very least this
must be possible in wholesale fashion and also ideally in more targeted
subsets which aids certain kinds of accessibility we'll touch on later.

https://en.wikipedia.org/wiki/User_interface

While we're on the subject of open knowledge it is important to be
cognizant that knowledge is not quite the same thing as raw factual
information. Knowledge is contextualized information and the FRTD is
about Open Knowledge and not Open Facts. This contextualization is best
thought of as some meta facts that highlight/enumerate the existence of all
the other facts either directly or recursively and help them make sense in
some kind of conceptual framework. Often a very small bit of carefully
placed context can take a system from absolute zero to literal superhero
without this being labor intensive on the part of implementers.

The other key to freedom is technologies enabling self sufficiency. It's
crucial to maximize this as much as possible by minimizing the things one
is dependent on to study, use, and further develop a technology.

One very important thing this means is the full OKS being cleanly
enumerated and easily available for offline use. Not just the main source
code and any official built executables as is often the case. Withholding any
other parts of the full OKS from easy offline access/study/use is absolutely
no different than withholding the main program sources. Whether they are
given away for free or sold (for mere reproduction cost or some not
extortionate profits) we don't care. The full OKS must be usable in a self
sufficient manner in any FRT.

Special emphasis here is on built versions of the HIS. At the very least it
must be easily possible to easily enumerate, identify, and conveniently
obtain the full HIS. It may also in some cases make sense to make targeted
subsets of the HIS easily identifiable and downloadable.

The ability to study, work, and otherwise operate offline as much as
possible is hugely important. Unfortunately it's significantly undervalued by
a disturbingly large portion of people right up to the point where they find
themselves needing it and not having it. FOSS projects requiring users
and/or contributors to have Internet access more than is strictly necessary
are absolutely unacceptable. It is crucial that FOSS projects both encourage
a taste for as well as enable self sufficiency to the greatest degree possible.
True technological freedom means among other things not being a dog on
the leash of one's Internet provider.

This document's primary author lives in New York City which is a
relatively prosperous and technology heavy part of the world. Nonetheless
while he usually has access to high speed Internet or at least some kind of
Internet the scenarios where he doesn't have it but could use it occur often
enough to be noticeable, annoying, and a cause of lost productivity in both
research and work.

Furthermore the primary author is both friends with and acquainted with
several people who recently/currently did/do not have Internet access at
their place of residence. Or at best have spotty access. In many of these
cases these people simply can't afford it. In other cases while they can
afford it they are still on a sufficiently tight budget that the expense of
buying Internet access was not justified as they could access it often enough
not to be totally crippled in their life at their local library, in some cases
through their local university, in some cases via the extortionate data plans
for their mobile phones, and sometimes due to the generosity of neighbors
who let them borrow their WiFi. This is true even now in 2023 and was
even more true before the coronavirus pandemic(especially in late 2016
when work on this FRTD first started).

Some people the primary author knows even go so far as to deliberately not
buy Internet access even though they can easily afford it because they find
it to be too much of a distraction in their life and that it gets in the way of
both productivity and family time. Yet even they have sometimes been
significantly inconvenienced by not being able to download certain
documentation that would have been quite useful for informational,
educational, productivity, leisure, and/or entertainment purposes. The way
FOSS projects inadvertently punish such people for making a rational and
healthy lifestyle choice to not always be connected is unacceptable.

Another important point to keep in mind is security. Some friends of the
primary author (as well as to a lesser extent the primary author as well at
times) have made a point of not being connected to the Internet more than is
strictly necessary. It is well known that exposure to a network especially
one as big and potentially dangerous as the Internet significantly increases
the chances of compromise. Any FOSS project that forces people to be

connected to the Internet for it's study/use more than is necessary
encourages them to potentially jeopardize their security and essentially
punishes them for trying to stay safe. This is unacceptable.

This wreaks absolute havoc on people trying to get important work done
whose threat model warrants using air gapped computers totally
disconnected from any network. This has been a real issue for a scientific
software consultancy the primary author interviewed with where people
working on the more sensitive projects there temporarily had to leave a
secure room/facility, go look up some Help Information of FOSS tools they
were using, go back to the secure room, and then try to use it from a
printout at best or memory at worst. This also is an issue for human rights
activists and organizations trying to safely leverage technology to
counteract the force/power amplification that technology also gives to
oppressors.

Also, forget security for a moment. Normal regular people definitely need
offline documentation.

Of course the key thing to keep in mind is that this is the kind of stuff that's
happening in one of the more prosperous regions of the world even in the
year 2023. In many other places these problems are exacerbated by many
orders of magnitude. In many less prosperous places Internet access is
notoriously unreliable, sometimes bordering on nonexistent. Also, forget
flakiness for a moment. Even now, in the 2020s, literally billions of people
alive today have never once been online at all. Ultimately FOSS projects
that that force users to constantly need to be online to use or study them
inadvertently perpetuate and increase inequality almost as much as some
actively malicious predatory monopolistic interests. The rich will be able to
study, learn, get better educated, get more skills, build better infrastructure,
get better incomes, and get yet more disproportionately rich both with
regards to money and overall quality of life. The poor and less fortunate
remain largely trapped in their cycle of misery and desperation. They never
get a meaningful chance to lift themselves up from that situation and into a
better, more prosperous, and happier life. Both advantages and
disadvantages of these kinds generally tend to compound exponentially in
feedback loops the latter of which we must avoid. Let's not mince words

https://en.wikipedia.org/wiki/Threat_model
https://en.wikipedia.org/wiki/Air_gap_(networking)
https://groups.google.com/g/clojure/c/dr7To3o2T5E?pli=1
https://github.com/angular/angular/issues/22580
https://discuss.elastic.co/t/documentation-download/8114
https://www.reddit.com/r/elm/comments/s2mjc6/offline_documentation_ebook/
https://stackoverflow.com/questions/32020794/offline-document-for-go-golang
https://github.com/ansible/ansible/issues/42303
https://discuss.ardupilot.org/t/offline-documentation/85653
https://www.un.org/en/delegate/itu-29-billion-people-still-offline
https://www.un.org/en/delegate/itu-29-billion-people-still-offline

here. Any FOSS project which does not enable self sufficiency to the largest
extent reasonably possible is a big part of the problem.

Instead of forcing people to have to be lucky all the time with regards to a
reliable Internet connection any halfway decent FOSS project would make
it so that if someone gets lucky just once they can grab a comprehensive
HIS along with any other desired OKS parts and then be able to work self
sufficiently regardless of future network access. They would also be able to
help their friends and people in their community by making copies for
them. If they're feeling more entrepreneurial perhaps they can even sell
copies. This is something they may also need to do just to break even
depending on the exact distribution mode to offset the cost of the
distribution media. FOSS projects really could do worse than enabling self
sufficiency, more generosity, more trade, and accelerated development for
people especially in less prosperous communities. There's a world of
difference between people having to get lucky once and having to be lucky
all the time.

Furthermore even in the more economically prosperous parts of the world
unnecessary dependence on an Internet connection is very unhealthy both
for individuals and communities. The Internet for the most part has a rather
tree like and hierarchic structure which has several unpleasant
ramifications.

Even in the world's less oppressive countries there exist Internet kill
switches. These have rarely been used because the regimes of these less
oppressive countries often find the Internet to be yet another useful medium
via which to propagandize, disinform/misinform, and spy. Another reason is
regimes understand that some limited freedoms like a relatively
uncontrolled Internet often make for significantly more productivity and
commerce among their populations resulting in significantly more taxable
revenue. Finally because of it's hierarchic nature most Internet traffic has to
pass through certain centralized exchange points where it can potentially be
spied on or otherwise manipulated/censored. Yet more devastatingly these
centralized points can be shut down by a regime if the cost-benefit dynamic
of keeping the Internet working changes. One such scenario might be
people are using it to organize en masse in an attempt to address legitimate

https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Internet#Routing_and_service_tiers

grievances that no amount of easy spying enabled by the Internet's
hierarchic topological structure can contain/disrupt the movement as would
be possible were it still small. Or it could be something much more
mundane like misguided attempts by many countries trying to stop cheating
on the national exam day.

Perhaps worst of all even if country A's regime is relatively benevolent and
doesn't want to shut down the Internet there for malicious reasons the fact is
country B's regime does and perhaps one day will. Just about all countries
have enemies whether open or secretive. Needless to say the centralized
exchange points at or near the root of the tree in any given country make an
extremely appealing target for (the intelligence agencies of) enemy
countries and can safely be assumed to have been compromised covertly or
otherwise by one or more of them. One day some country may very well
shut down some other's Internet and with it a significant part of the critical
infrastructure the latter depends on resulting in significant devastation. Oh,
also, forget well funded intelligence agencies, forget warring nation-states,
sometimes this can literally be pulled off by some random individual from
the comforts of their home.

Of course we're getting way ahead of ourselves here. A totally random
natural disaster can achieve similar effects and a disturbingly large portion
of any given country's critical infrastructure isn't even ready to handle that.
Also let's not kid ourselves about the climate crisis and the increasing
chances, frequencies, and severities of such disasters. The only real
question is what century the technologies communities can operate in a self
sufficient manner to respond after the crisis will be from.

You dear reader(s) do not want to be relying on the Internet more than is
strictly necessary. We believe in a global network transcending all borders
that people can use to collaborate, exchange ideas, solve pressing global
problems, and organize mutual aid if they wish. The world needs such a
network and needs it the millennium before last at the absolute latest.
Unfortunately that network is not the Internet in it's present form and likely
won't be the Internet in any of its future forms either much as we wish to be
proven wrong here. Even in the event a global mesh network of the same
scale and span as the Internet were to exist because say Hyperboria, IPFS,

https://en.wikipedia.org/wiki/Network_topology
https://www.bbc.com/news/technology-40118378
https://www.bbc.com/news/technology-40118378
https://www.wired.com/story/north-korea-hacker-internet-outage/
https://www.wired.com/story/north-korea-hacker-internet-outage/
https://news.usc.edu/45114/internet-outages-in-the-u-s-doubled-during-hurricane-sandy-usc-study-finds/
https://en.wikipedia.org/wiki/Mesh_networking
https://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think/
https://hyperboria.net/
https://ipfs.io/

Scuttlebutt, or something like them just randomly caught on and spread like
wildfire we still do not want to be dependent on that network more than is
strictly necessary. We deeply value cooperation and a healthy
interdependence as it makes life easier and raises standards of living.
However we also deeply value self sufficiency and independence. In most
regards these two possibilities are not mutually exclusive.

Another thing worth noting is that many parts of the world don't even have
reliable electricity let alone Internet access. What this implies is that an
FRT's HIS should try to account for that. For example in some rare cases
where an educational video really is by far obviously the best way for an
FRT implementer to get some information across that's fine. But in most
cases it really isn't and precludes people from doing things like printing out
all or some targeted subset of the HIS at a library or somewhere similar to
enable undisrupted study.

Again it's totally fine and even great to choose to rely on each other for
various things. The key word here however is choose. What's not so great is
to have to rely on each other. Sure there are many times in life doing so is
utterly unavoidable. Nonetheless there are just as many times when it
absolutely is and forming such unncessary dependences results in fragile
unhealthy individuals, communities, and relationships.

We cannot stress enough that understandability via complete Open
Knowledge Sets and self sufficiency are key to true technological freedom.

core FRT(Freedom Respecting Technology) requirements atop those
defined by FOSS

1. All tangible OKS(Open Knowledge Set) parts must be available for
easy self sufficient offline download, access, and use. The full entirety
must be obtainable in a very small and tenable number of downloads
for any given release of an FRT.

2. Sometimes there are intangible OKS parts like experiential elements
with educational information about an FRT's use, operations, and/or
workings exposed in some very dynamic user interface of a running

https://www.scuttlebutt.nz/

program designed for platform/environment A. Obviously this
information can't really be made available to someone with platform B.
That's fine so long as tangible OKS material isn't held back.

3. There must be an OKSE(Open Knowledge Set Enumeration) that
documents all available tangible elements of the OKS so that people
can reason about the parts of it they may or may not already have and
the parts of it they may or may not want. Additionally people must be
able to reason about exactly what FOSS compatible rights they have.
Major intangible elements must be mentioned too if they are the
primary mechanisms via which the FRT is intended to be studied.

4. The OKSE shouldn't be fancy, full of ceremony, or otherwise verbose.
It just needs to clearly and accurately enumerate all official educational
material associated with the project. There may be certain rare cases
where it may make sense to have a brief rationale in the OKSE
explaining why certain common elements aren't present in the official
OKS or certain rare ones are. Ultimately small is beautiful. Nobody
likes reading or writing this stuff more than strictly necessary. Not to
mention we need to keep bureaucracy to the absolute minimum. The
OKSE just must clearly exist, accurately enumerate everything, and be
clear that the technology at hand is an FRT. That last bit is so people
know immediately they have certain practical freedoms mere FOSS
doesn't necessarily give. Also this helps virally spread awareness of
FRTs existing as a distinct concept interested people may want to look
up. Finally this acts as a signaling mechanism that the FRT isn't just
accidentally doing the right thing, but rather very deliberately. We've
seen FOSS projects that seemed to be doing the right thing, but then
stopped having their documentation be available offline, usually
accidentally, sometimes intentionally. In addition to the raw
informational aspects, the OKSE is there to bring peace of mind, and
make it clear the FRT at hand is not like the FOSS projects just
mentioned. Emotional and psychological factors like this absolutely
matter.

5. The OKSE must be easily and prominently visible/discoverable at the
FRT's Point Of Initial Discovery which will usually be something like

a FOSS project's home page on the web where an interested party
lands after first learning of the FRT's existence by some means.

6. The OKSE must detail the FOSS compatible licenses/rights under
which all the various OKS components including but not limited to
parts of the main program sources and documentation are released to
help people quickly and accurately reason about rights and
responsibilities they have.

7. For example in the case of software which is the primary author's area
of expertise the full OKS includes at least any program sources, the
full built existing HIS(Help Information Set), any source materials
from which the HIS has been derived, and any officially built
executables.

8. Again the built HIS must be easily downloadable for offline use in it's
entirety including both Ramp Up and Reference materials for both
users and developers. If the HIS can be shown/viewed online without
one needing to run a build on the HIS sources it can be just as easily
available offline to them too.

9. Sometimes the source material for the HIS of a FOSS project isn't
available. But even when it is (which happily is somewhat often) one
shouldn't have to deal with the hassle of setting up and running the
documentation build/generator tool and it's whole recursive tree of
dependencies just to build/get the HIS. It's an important skill which we
absolutely encourage everyone to have as we don't want a culture of
helpless dependency. However it's not one anyone must need to use
when dealing with FRTs.

10. We've seen many cases where we not only have to build the HIS from
source material but then the built HIS wound up being a static set of
HTML, CSS, and JavaScript files constituting an offline site of sorts.
Disturbingly often it then wouldn't work properly or at all unless we
ran a web server locally. Avoid this. We've seen plenty cases of a HIS
consisting of exactly this composition that don't require running a local
web (or any other) server to read them. We could just go and open

https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_server

index.html in the offline documentation with our browsers and study.

11. If an FRT's offline HIS is an offline website clone with lots of HTML
files and some JavaScript the FRT should strongly consider adding in
some fully offline search functionality if we're already executing
JavaScript anyway. The tooling to do so is out there and it was so
beautiful to behold when we've seen it done.

12. There may be some edge cases where the HIS is something truly
dynamic because that's by far the best way to communicate certain
knowledge and that's fine. Odds are overwhelming though that your
FOSS project isn't one of them.

13. Highly dynamic (aspects/subsets of) a HIS like for example Jupyter
style notebooks requiring a local web server or ones with lots of videos
can sometimes be appropriate as they're the best way to communicate
certain knowledge. But often they are not and shouldn't be used lightly.
Remember to enable low tech study of as much of the HIS/OKS as
possible like for example printing out some documentation at a library.
Yes, AI will quite likely change this, but programatically searching
through videos is nowhere near as easy as searching through text(or
better yet other forms of structured but still human friendly data).

14. Even images while often necessary should not be overly relied on as
they're inaccessible to visually impaired people using many kinds of
screen reading software. Alt text and/or other such captions should be
provided wherever reasonably possible as a mitigation. This also
benefits people operating in text only environments. Again, while AI
may change this, FRT implementers shouldn't assume or require an
overly high tech environment lightly.

15. On the subject of images and videos in offline website clones (or other
mediums that can embed/reference them in a self contained fashion)
prefer videos to GIFs. This is more the fault of things like browser
implementations than GIF itself. But currently the constant default
looping/repetition of GIFs can sometimes make it quite hard to parse
where the demo starts and stops. Nor can we pause, rewind, forward,

https://en.wikipedia.org/wiki/Web_server_directory_index
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://moz.com/learn/seo/alt-text
https://en.wikipedia.org/wiki/GIF

speed up, or speed down selectively. This interferes with proper study.

16. Related to the above mentioned failure mode we've seen situations
where there were videos rigged to autoplay, repeat, and had the video
controls (play, pause, etc) disabled resulting in an absolutely stellar
replication of the above GIF related issues. (In some cases this may
have been related to quirks in our browser and not the FOSS project
under examination.) Bottom line the videos in an FRT's HIS must not
autoplay and must not hide controls.

17. On the matter of internationalization a good faith attempt should be
made. We understand that many projects are badly underresourced and
can't do a perfect, decent, or even any sort of job here. Perhaps recent
advancements in artificial intelligence can help mitigate this. (It would
be nice for there to be a universal language in addition to our native
ones. And unlike Esperanto actually neutral and actually widely used.
If such a language ever truly emerges an FRT's HIS among other
things should probably prioritize this before focusing on other
languages. Indeed defining the specification for such a language may
be a worthwhile future FRT to build in and of itself for linguists with
the background, skills, and desire. Seriously. English is utterly terrible.
Grammar books are often comically contradictory. For example they
can't even agree on something as simple/logical as the Oxford comma
for cleanly distinguishing the last two items in a list with 3+ items.
This is without even getting into the other uses of commas. Or other
aspects of grammar. We have exactly zero optimism this document is
grammatically correct for any definition of correctness readers may be
expecting.)

18. Much as with internationalization a serious good faith attempt must be
made at accessibility. We understand many projects just don't have the
resources and/or expertise to do this right or even at all. But those that
do must never treat accessibility as an afterthought.

19. Disturbingly often a FOSS project's built HIS just isn't available for
offline study. Don't do that. It must be downloadable for offline use for

https://en.wikipedia.org/wiki/Esperanto
https://en.wikipedia.org/wiki/Serial_comma

all FRTs. Period.

20. We absolutely encourage people to be versed in using things like web
crawling and web mirroring software. But these skills absolutely
shouldn't be necessary just to study an FRT.

21. In some cases of extreme interest instead of giving up we wrote
custom web scrapers to achieve needed results. Sometimes we just
weren't otherwise able to coax the various crawling software into
getting more or less the exact set of pages we needed. Or we were but
then still had to do a lot of offline scraping/cleaning to eliminate
various cruft included in each of the hundreds of cloned pages which
added up to significant storage space. The fact that we had to do this
for something claiming to be open is absurd. FRTs must not force this
pain on anyone.

22. Examples of said cruft include ads which are fine online. They're even
encouraged when done ethically to help FRTs cover hosting costs and
hopefully get actual well deserved revenue. Ads are forbidden in
offline HIS versions.

23. The other cruft includes but is not limited to all sorts of extra
decorations, headers, footers, and sidebars with navigation links to
things on the broader project site like marketing fluff that most
reasonable people wouldn't consider within the scope of the OKS let
alone the HIS. This is not to say we hate/forbid things like decorations
in the HIS content filled parts of the page. We do not in any way want
to dictate expressive decisions made by the HIS implementers or
otherwise constrain their freedom. We are merely lamenting how
maddeningly hard it is to get a clean, cruft free copy of data that FOSS
creators wholeheartedly wanted to be spread. A crufty website clone is
not a valid form of the HIS for any FRT which has one.

24. Having discussed cruft/bloat let's explore in the opposite direction and
examine how small we can go. An FRT can absolutely be just a single
text file with some educational information and/or program source. It
can even be a small text snippet in a comment on some random forum

https://en.wikipedia.org/wiki/Web_crawler
https://en.wikipedia.org/wiki/Web_crawler
https://www.eff.org/keeping-your-site-alive/mirroring-your-site
https://en.wikipedia.org/wiki/Web_scraping
https://docs.readthedocs.io/en/stable/advertising/ethical-advertising.html

post provided it can be cleanly copy-pasted in one go with very little
scrolling to a text file or word processor document without cruft or
formatting errors given the constraints of typical current text editor,
word processor, clipboard, web browser, etc implementations. If the
FRT's intended OKS is just the actual content of the message and not
really the way it's styled/displayed nothing beyond the contents of the
text snippet with the OKSE embedded at the beginning is necessary. If
styling/display matters for proper experience of the material and there's
some kind of nontrivial styling done any source material needed to
produce it is logically part of the OKS. In that case it must be disclosed
even if only as an adjacent FRTD compliant text snippet or a link to
some self contained file.

25. While we're on the subject of needing to disclose any sources from
which an FRT's HIS is made let's talk about how not to do it. We've
seen cases where the built HIS for a FOSS project was essentially an
offline website bundle. However inside that built bundle was also the
source material from which it was built. If we were lucky it was all in
a unified subfolder we could easily delete to reclaim persistent storage
space. When less lucky the source files were side by side with the built
HTML files which can be harder to get rid of. And of course this
leaves us wondering in what instances we failed to notice the problem
and both our network bandwidth and persistent storage space was
being wasted. In our case life is short and storage/bandwidth is cheap.
For many others stuck on old/modest systems with limited
connectivity this is a showstopper at larger bundle sizes. FRT
implementers must not put HIS source material into the built HIS
unless they have very good reason.

26. Regarding the above perhaps this could make sense if generated
HTML pages provided a quick link to whatever source file they were
generated from for the curious. Obviously this wasn't the case in the
situations we lamented and in our opinion the gains would be marginal
even if it were. Perhaps those that wanted to customize their HIS copy
with their own notes could benefit somewhat from the sources being
right there for quick rebuilds. Even then this would require the
presence of the HIS build tooling and the knowledge to use it.

https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Clipboard_(computing)

Needless to say in cases where we saw stray HIS source material we
found no sign of build instructions eliminating this theory as a logical
explanation. But, even if we did find something, we feel like there are
only marginal gains from this use case too. Any exceptions to the
above must have much stronger justification than what we've
historically seen.

27. We've seen many projects where the contents of the HIS as defined by
the boundaries of what constitutes the project are not adequately
enumerated and we can't reason about what parts of it we have nor
what's even available. A failure mode to avoid by clearly enumerating
the whole HIS as part of the OKSE.

28. The whole built HIS must be obtainable in one go/click/download for
those who want just that and not the whole OKS purely for study
purposes without say downloading and running the actual software.
Again the HIS is everything outside of comments in the main program
source and empty marketing fluff on the website. Educational elevator
pitch type material is logically a part of the HIS's Ramp Up subset
where the HIS properly exists and the larger OKS where it doesn't. The
full HIS just by itself must be obtainable as one download. To
minimize pain and bureaucratic overhead we allow a few exceptions.
One is FRTs which are one source file with a lot of contiguous
commentary at the beginning discussing design rationale and usage
which is effectively an HIS. Forcing implementers to split this out into
a separate file is pointless bureaucratic overhead. Another exception is
made for very small FRTs that consist of multiple files/folders
provided that the HIS can be trivially noticed and separated out even
by a novice after downloading. Among other reasons this is for
scenarios where someone wants to study an FRT but cannot run the
software on the machines they have.

29. Some FOSS projects allow user comments to augment pages of the
web based HIS. These comments often have good information in them.
If an FRT implementer's project does this the augmented HIS must be
available for offline study as well as the regular version. This could be
from some kind of periodically generated or better yet near real time

https://en.wikipedia.org/wiki/Elevator_pitch
https://en.wikipedia.org/wiki/Elevator_pitch

snapshot. The same goes for things like officially maintained wikis on
a both a wholesale and per article level as they are logically part of an
FRT's HIS. Wikis administered by external parties outside the FOSS
project should also strongly consider becoming FRTs.

30. A sufficiently large HIS should be broken into smaller useful (ideally
disjoint) subsets that are easily downloadable in a targeted fashion.
This way people with poor/limited Internet access and/or persistent
storage space can still study the parts of the FRT they find interesting
instead of being prevented from studying it entirely. (Specialized tools
that can recover/repair from failed downloads can mitigate this but are
still not enough.) This kind of breakdown may not always be possible
especially in cases where there are a lot of tight interdependencies
between the subsets. But a good faith attempt should be made once the
system gets large. Often failure here means the FRT is poorly
designed. But not always as the real world often has a lot of intrinsic
unavoidable complexity. Similar principles apply to other parts of the
full OKS.

31. Dependencies between any existing subsets of the HIS should be
specified as formally and machine readably as possible. (Perhaps
openly standardized methods of doing so will emerge or already exist
in some obscure place.) This facilitates grabbing useful subsets via
whole dependency trees both manually and in an automated fashion
with various kinds of packages managers. Similar principles apply to
other parts of an FRTs full OKS.

32. Dependencies between distinct FRTs should also be specified as
formally as possible for similar reasons. Imagine being able to use a
package manager pull in an FRT textbook whether by just by itself or
also with the whole dependency tree of prerequisites one needs to
understand it. Not to mention this can potentially save distributors and
packagers a lot of headaches if done in a standardized/reusable way.

33. We've seen cases where the Ramp Up subset of the HIS was available
for offline study but the Reference subset was not even though it very
much existed. An example is standard library documentation for

https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Standard_library

programming languages. Don't do that. This may enable people to get
started with a technology but will prevent them from progressing if
they need to look up a nontrivial detail while offline.

34. We've also seen cases where the full Reference subset of the HIS was
available for offline use but not the Ramp Up subset even though high
quality ramp up material existed. This is catastrophic as Reference
material is often useless if one doesn't have the conceptual background
to make sense of it that the Ramp Up part provides. This is a prime
example of Open Facts instead of Open Knowledge which is exactly
what we must avoid.

35. Analogously sometimes we've seen cases where Ramp Up + Reference
material is available offline on either the user level or
developer/internals level but not both. Must avoid trap.

36. On occasion we had what we believed to be a full HIS for a FOSS
project. Then we came upon something like an offline web page trying
to source a video from somewhere online instead of properly including
it in the offline HIS. Don't do this. It'd be one thing if it were some
recommended external community resource. However here we're
talking something that was clearly intended to be part of the official
HIS. This problem has also manifested for other knowledge filled HIS
material consisting purely of relatively simple things like text and
images. Full HIS availability means full HIS availability.

37. Some FOSS projects have the full HIS available for offline study but
make them difficult to find unless one is really looking on their
website. Don't be one of them. We are so burned out by frequent lack
of the offline HIS in the majority of FOSS projects that we may simply
assume they're not there and go study, use, and contribute to another
project which does this right instead.

38. There are scenarios where it's obvious that there is a complete HIS (or
useful subset) available for offline study but the link to it is broken. Be
sure this isn't your FOSS/FRT project dear reader. To get at the HIS the
FOSS project intended to be as public as possible we sometimes had to

https://en.wikipedia.org/wiki/Programming_language

use the same kind of techniques as when conducting a penetration test
searching for IDOR(Insecure Direct Object Reference) vulnerabilities.
Penetration testing and hacking skills are something we strongly
encourage everyone to have. But they should not be necessary even in
their most basic forms to use/study an FRT.

39. We've also dealt with FOSS projects which used to have the offline
HIS available but then no longer seemed to with newer releases. The
HIS just wasn't obviously or nonobviously linked/visible anywhere on
their websites. However the HIS was actually there if we used IDOR
vulnerability hunting type techniques to find them. We really really
wish we were making this up. All the hard work FOSS projects put
into assembling the HIS was wasted for those users and contributors
that don't have reliable Internet access, absurd amounts of patience,
and penetration testing skills. Avoid this.

40. Then there are the FOSS projects that used to have a full offline HIS
but then actually stopped instead of just seeming to as above. Another
must avoid failure mode.

41. There are FOSS projects/packages where there's a full offline HIS and
it's installed on a system by default. However when one invokes the
help functionality of that project it either a) points to the online set
instead of the offline set present on the system and/or b) fails to
disclose the presence of the offline set at all. To add insult to injury
sometimes the rather undiscoverable offline HIS is quite large and eats
significant persistent storage space. The endlessly innovative ways in
which FOSS projects manage to pull crushing defeat from the very
jaws of victory itself never cease to astound us. Yet another failure
mode to avoid and a small thing to change for a large impact. There
needs to be an unbroken discovery chain from the main entry points of
the HIS to any other part of the HIS.

42. It should go without saying that a properly designed offline HIS
references the official online one for easy discovery of Sources Of
Truth so to speak.

https://en.wikipedia.org/wiki/Penetration_test
https://en.wikipedia.org/wiki/Insecure_direct_object_reference

43. Sometimes powerful help systems that then correctly point to a robust
local HIS exist but it's not obvious how to invoke said help system or
even that it exists. Varying interfaces have varying constraints that may
or may not allow broadcasting of the help system's existence in a
clearly visible yet unobtrusive fashion. But a good faith attempt must
be made.

44. We've seen situations where there's a full offline HIS consisting of
very solid Ramp Up and Reference material, it's obvious how to
invoke the generic main help functionality, but then the help points us
to somewhere in the Reference or Late Ramp Up parts of the material.
Frustratingly enough there exists good Early Ramp Up material for
basic mental model building and pointers to the other available help.
But the system still failed to point to it. FRTs must avoid making that
mistake. For FOSS projects this is another tiny fix for humongous
gains.

45. With FRTs the most important thing for implementers to focus on is
capturing as much of the knowledge they want to share as possible into
the OKS without being overly concerned how that's distributed
amongst the set's parts. That said the OKS parts should be kept as
uncoupled/as reasonably possible. We've seen FOSS projects where
the text files making up the HIS were embedded into the built
executable and couldn't also be read by other text viewers/editors
present on the system. Avoid coupling like this.

46. An FRTs offline HIS must be published in at least one standardized
open format. (Or better yet FRTD compliant format. This requirement
will likely be tightened in future FRTD versions as FRTs hopefully
become more widespread.) If the offline HIS is a bundle consisting of
many different kinds of files at least one of the bundles must consist
purely of open formats.

47. Most real life systems including FRTs have both direct/indirect
dependencies/subsystems/subcomponents they're built from. Ideally
FRTs would be built from the ground up purely in terms of other FRTs.
Such an FRT is defined to be a Rank 1 Freedom Respecting

Technology. R1FRT for short.

48. A Rank 2 Freedom Respecting Technology (or R2FRT for short) is
defined as having only FRT and non-FRT FOSS dependencies.

49. A Rank 3 Freedom Respecting Technology (or R3FRT for short) can
have only FRT, non-FRT FOSS, and source available dependencies.

50. A Rank 4 Freedom Respecting Technology (or R4FRT for short) is
anything that doesn't qualify as an R1FRT, R2FRT, or R3FRT.

51. Optional build or execution time dependencies impact the above
mentioned classifications based on the least freedom respecting
component actually used.

52. When talking about an FRT it can occasionally be prudent to state
what version of the FRTD they comply with and/or what Rank an FRT
has to better assist people being able to reason about what kinds of
freedoms the FRT in question affords them.

53. The above mentioned taxonomy is likely oversimplified and still
subject to change as our understanding of the problem space improves.
So don't take it too seriously or use it too often. It should be good
enough to give useful shorthand in conversations about degrees of
(un)freedom. But it's not a substitute for deep nuanced conversations.

54. Suppose one implemented an adapter for the interface of a mere FOSS
or totally unfree external system to make using that system more
comfortable. Since the external system is not logically part of the
adapter's implementation it doesn't prevent the adapter from being an
FRT. Adapters should be clearly identified as such and clearly specify
the external systems they are wrapping. All other build and execution
time dependencies of the adapter proper must of course be FRTs.

55. Use sane default (file) names for things like projects, the offline HIS,
etc so that they can be searched for in an automated manner on one's
computer. FRT implementers should avoid crazy characters that cause

issues in things like shell commands. We're tired of trying to figure out
how to name a file holding the HIS for the TLA*\F+ project so that we
actually have a chance of being able to find it later.

56. Many FOSS style works of research are structured as a crufty yet still
not properly savable blog post. Our attempts to save it with our
browsers pulled in both extra cruft and failed to pull the educational
demo videos embedded from some external video sharing site. Linked
data sets and program sources needed to reproduce the research also
obviously don't get saved. It's fine for FRTs to expose research this
way. But there must be a cruft free offline bundle with the full OKS
obtainable in a very small number of downloads (ideally one) for all
FRT works of research.

57. Given how much we discussed the HIS component of an FRT's OKS
we want to emphasize that the FRTD is not necessarily a call for a
bigger HIS. It's a call to think system wide about the whole OKS. It's a
call to ensure that the full existing OKS is adequately open,
discoverable, obtainable, retrievable, and usable offline. It's a call to
make sure the whole OKS remains so as new components that
logically belong there come into existence or old components are
enlarged. This is the bare minimum prerequisite needed to practically
ensure the freedoms our predecessors intended.

58. Again, the FRTD is not a call for a bigger HIS / more documentation.
Sure, there are times that can help, there are times it's arguably
necessary. More often than not, however, we believe it to be
counterproductive. The main focus for implementers should be
thinking system wide and capturing as much of the knowledge they
want to share as possible into the OKS via the full multitude of
channels available to them. Often narrative documentation is a deeply
suboptimal channel for this knowledge capture. Real talk. Virtually
nobody likes writing this documentation, let alone maintaining it.
Virtually nobody likes reading it either, necessary as that may often be
for them to truly study, use, or further develop a system. Mainstream
approaches to documentation simply do not scale. We've seen FOSS
projects with documentation quality most would agree is in the top 1%

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Command-line_interface

of what's out there that still had nontrivial omissions or misleading
inaccuracies. Here's what we believe to be a more tenable approach.
First make every part of the system as self describing as possible
whether that's program sources, UI, or whatever else. When the
documentation inevitably fails it's extremely desirable for the sources
of truth about the system on both a user and developer level to be as
clear and self explanatory as possible. After that there will still be
plenty of cases where system components are reasonably self
describing but the system as a whole is not. Documentation will still
need to be written and maintained to close that gap, but on a much
smaller scale than would be needed otherwise. All this documentation
needs to do is empower people with a big picture overview and some
context on where to start digging around in the otherwise self
describing components. This is a much more attainable objective.
Furthermore, many things that were/are traditionally mostly/fully
narrative prose documentation very arguably shouldn't be, especially in
security contexts where ambiguity is dangerous, even more especially
in the contexts like security protocol specifications. Perhaps in the
future AI may make mainstream documentation more scalable, but
until then we leave readers with these anecdotes to think about.

59. Much as we wish this went without saying, identifier/variable/symbol
names are a valuable channel via which to transfer knowledge in the
context of software development. We've seen way too many FOSS
projects that used cryptic identifiers that made studying the system
very hard in spite of us having a good grasp on both the programming
language and problem domain at hand. This would be perfectly fine if
that's how those developers legitimately thought of the concepts
behind those identifiers in their head, but that's almost never actually
the case, which leads us to question what kind of openness and
knowledge sharing is that? Identifiers in program sources must reflect
how the developers think of the concept behind them internally.
Exceptions can be made in some very specialized scenarios. For
example, perhaps a program is being developed on or for a heavily
resource constrained system that struggles to fit source files into
memory. In that case it can be reasonable to shrink down identifier
names even if they start bordering on cryptic. Or perhaps the program

https://nqsb.io/
https://nqsb.io/
https://nqsb.io/
https://nqsb.io/
https://chelseatroy.com/2021/09/14/the-art-of-documentation/
https://cacm.acm.org/research/lessons-learned-from-30-years-of-minix/

sources are being written for some legacy system whose programming
language only permits short identifier names. Generally, even in short
(sub)programs of say five lines where the identifier has limited scope,
identifiers should model how the developers thinks about them
internally. Let's not kid ourselves, that five line scope often has a way
of becoming a 500 line scope.

60. As AI is being used to generate various kinds of works in whole on in
part we require that FRTs disclose all nontrivial parts of them that were
generated with AI. We furthermore require that the AI system used for
the generation be disclosed with as much specific information as is
reasonably possible like say the version number of the AI
system/model and the exact prompts/inputs used to trigger the
generation. Just as disclosing program sources allows people to learn
new programming techniques this will allow people to learn AI usage
techniques they may not have been aware of prior. Withholding this
information is fundamentally no different than withholding part of the
main program sources or publishing intermediate sources output by
some preprocessor. If available to FRT authors under
terms/circumstances where they can reasonably share them the sources
and methodologies powering the AI system used for generation must
be disclosed for all it's aspects including model architecture, data
collection, data preprocessing, model training, model validation, and
inference. Furthermore parameters the trained/optimized AI model
used during generation as well as the training data leading to those
parameters should generally be disclosed. FRTs must not disclose
parameters or training data in scenarios where the AI system was
trained on people's private and/or otherwise sensitive information
unless explicit permission to disclose is granted by the people whose
information powers the model.

61. If the FRT at hand is itself some kind of AI system similar principles
apply. Sources and methodologies powering the AI system must be
disclosed on all fronts including model architecture, data collection,
data preprocessing, model training, model validation, and inference.
The trained/optimized AI model parameters and the training data
which led to them should generally be disclosed. Again FRTs must not

https://lakefs.io/blog/machine-learning-architecture/
https://en.wikipedia.org/wiki/Data_collection
https://en.wikipedia.org/wiki/Data_collection
https://neptune.ai/blog/data-preprocessing-guide
https://www.quora.com/What-do-you-mean-when-you-say-you-are-training-a-machine-learning-model
https://towardsdatascience.com/the-5-stages-of-machine-learning-validation-162193f8e5db
https://www.datacamp.com/blog/what-is-machine-learning-inference
https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac
https://www.techopedia.com/definition/33181/training-data

disclose these if the AI system was trained on people's private and/or
sensitive information unless explicit permission is granted by the
people who it pertains to. Even if this permission is granted seriously
consider using techniques like differential privacy before disclosing
the data, disclosing the model parameters, or training the AI model.

concluding remarks

Hopefully after having read thus far it should now be obvious that many
technologies even though compliant with the various FOSS definitions still
fail to provide practical technological freedom. A newer clearer vision for
technological freedom was long overdue and this is our attempt to rectify
the situation.

In some cases the problems mentioned here are deliberate. Some FOSS
projects are frankly just bait by predatory entities to tempt vulnerable
targets. These targets could be idealistic people. These targets could be
strategic thinking organizations trying to maximize their options by
avoiding unfree systems locking them in. Either way they wind up trapped
in expensive commercial "support" contracts instead.

To be clear we have nothing against entities selling FOSS products and/or
support for them. We all need to make a living. Our issue is with so called
"open" systems not providing us the tools to help/serve ourselves when
clearly they (almost) exist or could exist with some not very labor intensive
modifications.

This document is not for the makers of the predatory FOSS projects
mentioned above. This is for the many FOSS makers that seem to have no
visible/obvious bait profit motive, that hopefully have some kind of healthy
profit acquisition capabilities, that have a genuine enthusiasm for open
knowledge, and that have a genuine desire to make the world a better place.
It's here to make explicit the things they accidentally/misguidedly
omit/misprioritize.

We hope that this document inspires the creation of many FRTs right from
the start, independent evolution of FOSS projects into FRTs driven by their

https://en.wikipedia.org/wiki/Differential_privacy

developers, and also such evolution driven by user request. We hope
organizations trying to bolster their public image and/or win developer
goodwill start developing proper FRT initiatives instead of just mere FOSS
initiatives.

Are the requirements stated herein more work for creators? Quite possibly.
Though many FOSS projects are much closer than they think to being
FRTD compliant and only need to make quite minor corrections for major
benefit.

Aren't implementers already often horribly badly overworked,
underresourced, and stuck dealing with entitled users? Very much yes.
Sadly the primary author is ashamed to have been among those entitled
users at points in the past.

So why then should FOSS projects aim for FRTD compliance when they
have limited resources to invest? Often when one has limited resources and
a big vision they wish to execute the best use of those limited resources is
conducting activities that will bring in more resources until there are at least
sufficient resources for the situation at hand.

How do contributors to FOSS projects come about once they discover the
project by some means? They try meaningfully studying it beyond the
initial marketing fluff to see if it's suitable for their objectives whether
directly or with some reasonable amount of customization work. Then once
they've studied enough to meaningfully use the project and do so for a while
they get a deep gut feeling of its current behavior/workings and a sense of
the gap between those and the desired behavior/workings. At that point they
finally know enough to contribute meaningful fixes that the project
maintainers would likely find useful and incorporate. After some time if
there's a consistent track record of contributions they themselves may be
promoted to a maintainer if that's what they want. This is what the FOSS
contribution pipeline often looks like.

Often what happens to this pipeline in non-FRT FOSS projects is that it gets
disrupted very early on by newcomers not being able to meaningfully
access/study the full Open Knowledge Set in a reasonably self sufficient

manner let alone use it, further develop it, and contribute those
developments back. FRTD compliance should be prioritized over other
often less important feature work because True Open Knowledge is the
meta feature that builds the community around a project and thus helps
scale the resources closer to what's really needed for other development.
The alternative is a death spiral of burnout once resources run out.

Open the knowledge and the builders will come.

	intended audience and compact summary
	motivations
	main thesis
	core FRT(Freedom Respecting Technology) requirements
	concluding remarks

