
Freedom Respecting Technology Definition
bringing about the Next Generation of Open Source, Free Software, Open
Knowledge, Open Culture, and Technological Freedom

(obsolete) version 1.2.1 | 2023-07-04 | official home for future versions

note: This is (generated from) a self contained (though very
sloppily/unidiomatically) handwritten HTML file without any other
embedded resources and can thus easily be saved as a self contained unit for
offline reading. It's rather annoying that mobile browsers don't have HTML
saving functionality but this is a defect with them not WHATWG standard
HTML as an open file format. Desktop/laptop browsers aren't much better
because if a page references images it generally gets saved as a "blah.html"
file and a "blah_files" folder instead of both being wrapped by a folder that
can then later be moved/copied as one unit as desired and still benefit from
it's subcomponents being easily accessed as desired. The year is 2023 and
alas basic common sense is nary to be found. We'll likely take steps to
address this later. Copy and share as widely as possible but don't make
modifications without consulting the authors first.

author information

initiator, primary definition author, and benevolent leader for life:
Georgiy Treyvus - makesourcenotcode the_swirly_thing gmail le_pointer
com

reviewers, coauthors, supporters, and other helpers:
{insert (nick)names, pseudonyms, and/or email addresses one per line as
desired by contributors here}

preamble

Technology in various forms is influencing if not outright controlling ever
more aspects of our lives with no signs of slowing down. Both on an
individual and collective/collaborative/community level we must
understand and control the technology we use or it will control us. The
latter may happen by itself in the event of strong artificial intelligence.

https://makesourcenotcode.github.io/freedom_respecting_technology.html#frtd
https://en.wikipedia.org/wiki/HTML
https://html.spec.whatwg.org/
https://en.wikipedia.org/wiki/Open_file_format

More likely it may happen by the hands of the few developers who truly
understand it and who have a depressingly high probability of being
employed/bribed/coerced by unethical corporations and/or regimes.
However the latter scenario comes about it's absolutely unacceptable.

Thankfully we are not alone in our sentiments here. Long before most of
this document's authors were born many people started work in this
direction. A prominent example is Richard Stallman who formalized these
sentiments as well as certain good cultural tendencies he had seen with
regards to the sharing of knowledge which were slowly disappearing into
what became the GNU Project and the Free Software movement more
generally. This also inspired at least indirectly other movements of free (as
in freedom) culture/technology including but not limited to Open Source
and Creative Commons. All in all these movements have done a
tremendous amount of good and are huge steps in the right direction.
Ultimately it is on the shoulders of these giants upon which we stand as we
write this document in an attempt to progress yet further.

Herein we attempt to fully articulate and address longstanding and growing
frustrations we've been feeling for years if not decades. These originate
mainly with regards to Open Source Software, to a lesser extent Free
Software, and extend well beyond just software into technology more
generally.

While many FOSS(Free and Open Source Software) projects are often
made in good faith and we often can't express in words how deeply we
appreciate some of them the fact is that the vast majority of (sometimes
very promising) FOSS projects fail badly to properly deliver on certain
critical aspects of openness, accessibility, and technological freedom. In
spite of being fully compliant with things like the GPL(GNU General
Public License), FSD(Free Software Definition), and/or OSD(Open Source
Definition) thus being theoretically free many FOSS projects fail in making
technological freedom practical. Unfortunately there are a lot of mostly
artificial barriers that (usually unintentionally) stand in the way of many
interested people (including very skilled competent ones) exercising the
crucial freedoms of using, studying, understanding, modifying, copying,
(re)distributing, further developing, and contributing back to FOSS projects

https://en.wikipedia.org/wiki/Richard_Stallman
https://stallman.org/
https://en.wikipedia.org/wiki/GNU_Project
https://www.gnu.org/gnu/thegnuproject.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_model
https://opensource.org/
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.org/osd-annotated

in a truly free, autonomous, and self sufficient manner.

Thus we seek to develop this FRTD(Freedom Respecting Technology
Definition) driven by the principles of radical understandability, radical
discoverability, radical accessibility, radical open knowledge, and radical
self sufficiency. (A crucial consequence of that last bit is that it can, should,
and hopefully ultimately will also lead to healthier and significantly more
resilient individuals and local communities.)

We're aiming to carefully study, formalize, and explicitly forbid as many of
the devastating failure modes we've seen in FOSS projects at both the user
and developer level as we can. (We're also aiming to blur if not outright
eliminate depending on context the mostly if not entirely artificial
boundaries between users and developers.) We also aim to carefully study,
highlight, formalize, and explicitly require at least the bare minimum set of
best practices which some FOSS projects have engaged in (even if only
accidentally in some cases) that have given end users real practical
technological freedom. Though we won't be able to do it perfectly we aim
to have something that as much as possible formalizes and captures the very
essence of technological freedom. We're aiming for something which can
guide ourselves and other well meaning developers of technologies
including but not limited to software, firmware, hardware, protocols,
technical specifications, algorithms, scientific research, knowledge, media
(informative and artistic), and combinations thereof(which is what most
things are) towards building a truly free and healthy world.

While this document is intended primarily to address problems with Free
Software and Open Source Software a lot of the issues discussed here
pertain to all software and to technology more generally. Thus we hope this
will be read by, of interest to, and acted upon by a wide and diverse
audience. We feel that this document can help even developers of closed
source software make many aspects of it better as well as provide good food
for thought to more moderate movements such as Fair Source. This is
because as one often hears freedom is not free whether the cost comes in
the form of effort, labor, time, money, or something else. For a technology
to support freedom even partially let alone completely it must have certain
qualities. Not trying hard to take away people's technological freedoms is

https://fair.io/

not enough. Active steps must be taken to add qualities that create and
preserve freedom. Some side effects of technologies having some of these
qualities are better user and developer experiences as well as better internal
design.

In addition to this definition document, which itself is almost an
FRT(Freedom Respecting Technology), we intend to release a few other
FRTD compliant technologies to the public both for their personal utility
and more crucially for peer review. Indeed at the bottom of this document is
an embedded demonstration of one of the smallest possible proofs of
concept that still solves a real problem both in individual and business use
contexts. Yes under certain conditions an FRT can be a small piece of
copyable text and FRTD compliance can often be easier than one first
thinks upon having read this whole document.

These projects are intended to demonstrate and capture the spirit of FRTs in
ways that even the best possible version of this document will likely fail to.
We want people to feel in a hands on manner the difference between FRTs
and typical FOSS. We want people to feel it viscerally. These example
projects will almost certainly come in the form of software as things like
hardware for example are largely outside of our current areas of expertise.
Help realizing FRTs in other mediums is enthusiastically welcomed and
would be deeply appreciated so get in touch!

We want to test the approachability, discoverability, learnability,
accessibility, and understandability of these sample projects on a wide
variety of people from both the user and developer perspectives. We want to
assure that skilled developers aren't adversely affected by any of the
requirements of the FRTD. We want to see if novice developers find the
projects approachable for hacking on. We want to see how quickly and
easily a random user can cross into developer territory to modify a given
FRT to be more in line with their desires. Again being able to do this in
theory is not enough. It must be practical.

Finally we hope that this definition and the technologies we release will be
the beginning of a movement at least as large and successful as FOSS was.
We dream of a world where people can combine FRTs realized in various

mediums like hardware, software, etc into full solutions to their
technological needs and wants.

main thesis

Failure of FOSS projects to provide the crucial technological freedoms we
seek stems from their failure to be reasonably understandable to people
(even sometimes ones with significant expertise) in a reasonably self
sufficient manner. Understandability and self sufficiency are the two
absolutely necessary prerequisites for technological freedom. Hence we
examine what it takes to provide both.

Open Source is an absolutely necessary but often insufficient subset of
Open Knowledge which is the real goal and the key to understandability.
The crucial but still ultimately narrow focus on source access often distracts
us from focusing holistically on proper access to the full Open Knowledge
Set associated with the technology which is what truly matters.

What do parts of the OKS(Open Knowledge Set) look like? Sometimes they
can be a little abstract and even inaccessible in some circumstances. For
example in the case of software an important such element of the OKS is
information exposed by the UI(user interface) in the environments where
that software can be run. Other parts can be much more straightforward.
Another even more important element is both the built and source forms of
the Help Information Set a subset of the OKS consisting of things like any
official written documentation, diagrams, instructional/demonstratory
videos, and so forth that may exist. Indeed a lot of what this document will
focus on is this HIS(Help Information Set) though it's still critical always
think system wide in terms of the whole OKS.

Most systems are useless without the HIS component of the OKS from both
a user and developer perspective. Depending on how self describing the
components of the technology/system in question are the size of the HIS
will vary. Sometimes it can reasonably be nonexistent given the other
elements of the OKS. However for all but the simplest technologies the HIS
will be necessary. Happily many (though not a majority of) FOSS projects
do a somewhat decent job of providing the HIS in circumstances where

https://en.wikipedia.org/wiki/User_interface

most reasonable people would deem it necessary and/or desirable. The main
issue we have is with how the HIS is not accessible in a reasonably self
sufficient manner.

Ultimately understandability comes from the full OKS being as ubiquitous
and easy to access and cleanly copy (with little to no extra cruft) as
humanely possible in both built and source forms. At the very least this
must be possible in wholesale fashion and also ideally in more targeted
subsets which aids certain kinds of accessibility we'll touch on later.

While we're on the subject of open knowledge it is important to be
cognizant that knowledge is not quite the same thing as raw factual
information. Knowledge is contextualized information and the FRTD is
about Open Knowledge and not Open Facts. This contextualization is best
thought of as some meta facts that highlight/enumerate the existence of all
the other facts either directly or recursively and help them make sense in
some kind of conceptual framework. Often a very small bit of carefully
placed context can take a system from absolute zero to literal superhero
without this being labor intensive on the part of implementors.

The other key to freedom is technologies enabling self sufficiency. It's
crucial to maximize this as much as possible by minimizing the things one
is dependendent on to study, use, and further develop a technology.

One very important thing this means is the full OKS being cleanly
enumerated and easily available for offline use. Not just the main source
code and executables as is often the case. Withholding any other parts of the
full OKS from easy offline access/study/use is absolutely no different than
withholding the main program sources. Whether they are given away for
free or sold (for mere reproduction cost or some not extortionate profits) we
don't care. The full OKS must be usable in a self sufficient manner in any
FRT.

Special emphasis here is on built versions of the HIS. At the very least it
must be easily possible to easily enumerate, identify, and conveniently
obtain the full HIS. It may also in some cases make sense to make targeted
subsets of the HIS easily identifiable and downloadable.

The ability to study, work, and otherwise operate offline as much as
possible is hugely important. Unfortunately it's significantly undervalued by
a disturbingly large portion of people right up to the point where they find
themselves needing it and not having it. FOSS projects requiring users
and/or contributors to have Internet access more than is strictly necessary
are absolutely unacceptable. It is crucial that FOSS projects both encourage
a taste for as well as enable self sufficiency to the greatest degree possible.
True technological freedom means among other things not being a dog on
the leash of one's Internet provider.

This document's primary author lives in New York City which is a
relatively prosperous and technology heavy corner of the world.
Nonetheless while he usually has access to high speed Internet or at least
some kind of Internet the scenarios where he doesn't have it but could use it
occur often enough to be noticeable, annoying, and a cause of lost
productivity in both research and work.

Furthermore the primary author is both friends with and acquainted with
several people who recently/currently did/do not have Internet access at
their place of residence. Or at best have spotty access. In many of these
cases these people simply can't afford it. In other cases while they can
afford it they are still on a sufficiently tight budget that the expense of
buying Internet access was not justified as they could access it often enough
not to be totally crippled in their life at their local library, in some cases
through their local university, in some cases via the extortionate data plans
for their mobile phones, and sometimes due to the generosity of neighbors
who let them borrow their WiFi. This is true even now in 2023 and was
even more true before the coronavirus pandemic(especially in late 2016
when work on this FRTD first started).

Some people the primary author knows even go so far as to deliberately not
buy Internet access even though they can easily afford it because they find
it to be too much of a distraction in their life and that it gets in the way of
both productivity and family time. Yet even they have sometimes been
significantly inconvenienced by not being able to download certain
documentation that would have been quite useful for informational,

educational, productivity, leisure, and/or entertainment purposes. The way
FOSS projects inadvertently punish such people for making a rational and
healthy lifestyle choice to not always be connected is unacceptable.

Another important point to keep in mind is security. Some friends of the
primary author (as well as to a lesser extent the primary author as well at
times) have made a point of not being connected to the Internet more than is
strictly necessary. It is well known that exposure to a network especially
one as big and potentially dangerous as the Internet significantly increases
the chances of compromise. Any FOSS project that forces people to be
connected to the Internet for it's study/use more than is necessary
encourages them to potentially jeopardize their security and essentially
punishes them for trying to stay safe. This is unacceptable.

This wreaks absolute havoc on people trying to get important work done
whose threat model warrants using air gapped computers totally
disconnected from any network. This has been a real issue for a scientific
software consultancy the primary author interviewed with where people
working on the more sensitive projects there temporarily had to leave a
secure room/facility, go look up some Help Information of FOSS tools they
were using, go back to the secure room, and then try to use it from memory.
This also undoubtably is an issue for human rights activists and
organizations trying to leverage technology to counteract the force/power
amplification that technology also gives to oppressors.

Also forget security for a moment. Normal regular people definitely need
offline documentation.

Of course the key thing to keep in mind is that this is the kind of stuff that's
happening in one of the more prosperous regions of the world even in the
year 2023. In many other places these problems are exacerbated by many
orders of magnitude. In many less prosperous places Internet access is
either notoriously unreliable or (almost) nonexistent. Ultimately FOSS
projects that that force users to constantly need to be online to use or study
them inadvertently perpetuate and increase inequality almost as much as
some actively malicious predatory monopolistic interests. The rich will be
able to study, learn, get better educated, get more skills, build better

https://en.wikipedia.org/wiki/Threat_model
https://en.wikipedia.org/wiki/Air_gap_(networking)
https://groups.google.com/g/clojure/c/dr7To3o2T5E?pli=1
https://github.com/angular/angular/issues/22580
https://discuss.elastic.co/t/documentation-download/8114
https://www.reddit.com/r/elm/comments/s2mjc6/offline_documentation_ebook/
https://stackoverflow.com/questions/32020794/offline-document-for-go-golang
https://github.com/ansible/ansible/issues/42303
https://discuss.ardupilot.org/t/offline-documentation/85653

infrastructure, get better incomes, and get yet more disproportionately rich
both with regards to money and overall quality of life. The poor and less
fortunate remain largely trapped in their cycle of misery and desperation.
They never get a meaningful chance to lift themselves up from that
situation and into a better, more prosperous, and happier life. Both
advantages and disadvantages of these kinds generally tend to compound
exponentially in feedback loops the latter of which we must avoid. Let's not
mince words here. Any FOSS project which does not enable self sufficiency
to the largest extent reasonably possible is a big part of the problem.

Instead of forcing people to have to be lucky all the time with regards to a
reliable Internet connection any halfway decent FOSS project would make
it so that if someone gets lucky just once they can grab a comprehensive
HIS along with any other desired OKS parts and then be able to work self
sufficiently regardless of future network access. They would also be able to
help their friends and people in their community by making copies for
them. If they're feeling more entrepreneurial perhaps they can even sell
copies. This is something they may also need to do just to break even
depending on the exact distribution mode to offset the cost of the
distribution media. FOSS projects really could do worse than enabling self
sufficiency, more generosity, more trade, and accelerated development for
people especially in less prosperous communities. There's a world of
difference between people having to get lucky once and having to be lucky
all the time.

Furthermore even in the more economically prosperous parts of the world
unnecessary dependence on an Internet connection is very unhealthy both
for individuals and communities. The Internet for the most part has a rather
tree like and hierarchic structure which has several unpleasant
ramifications.

Even in the world's less oppressive countries there exist Internet kill
switches. These have rarely been used because the regimes of these less
oppressive countries often find the Internet to be yet another useful medium
via which to propagandize, disinform/misinform, and spy. Another reason is
regimes understand that some limited freedoms like a relatively
uncontrolled Internet often make for significantly more productivity and

https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Internet#Routing_and_service_tiers

commerce among their populations resulting in significantly more taxable
revenue. Finally because of it's hierarchic nature most Internet traffic has to
pass through certain centralized exchange points where it can potentially be
spied on or otherwise manipulated/censored. Yet more devastatingly these
centralized points can be shut down by a regime if the cost-benefit dynamic
of keeping the Internet working changes. One such scenario might be
people are using it to organize en masse in an attempt to address legitimate
grievances that no amount of easy spying enabled by the Internet's
hierarchic topological structure can contain/disrupt the movement as would
be possible were it still small. Or it could be something much more
mundane like misguided attempts by many countries trying to stop cheating
on the national exam day.

Perhaps worst of all even if country A's regime is relatively benevolent and
doesn't want to shut down the Internet there for malicious reasons the fact is
country B's regime does and perhaps one day will. Just about all countries
have enemies whether open or secretive. Needless to say the centralized
exchange points at or near the root of the tree in any given country make an
extremely appealing target for (the intelligence agencies of) enemy
countries and can safely be assumed to have been compromised covertly or
otherwise by one or more of them. One day some country may very well
shut down some other's Internet and with it a significant part of the critical
infrastructure the latter depends on resulting in significant devastation.

Of course we're getting way ahead of ourselves here. A totally random
natural disaster can achieve similar effects and a disturbingly large portion
of any given country's critical infrastructure isn't even ready to handle that.
Also let's not kid ourselves about the climate crisis and the increasing
chances, frequencies, and severities of such disasters. The only real
question is what century the technologies communities can deploy in a self
sufficient manner to respond after the crisis will be from.

You dear reader(s) do not want to be relying on the Internet more than is
strictly necessary. We believe in a global network transcending all borders
that people can use to collaborate, exchange ideas, solve pressing global
problems, and organize mutual aid if they wish. The world needs such a
network and needs it the millennium before last at the absolute latest.

https://en.wikipedia.org/wiki/Network_topology
https://www.bbc.com/news/technology-40118378
https://news.usc.edu/45114/internet-outages-in-the-u-s-doubled-during-hurricane-sandy-usc-study-finds/

Unfortunately that network is not the Internet in it's present form and likely
won't be the Internet in any of its future forms either much as we wish to be
proven wrong here. Even in the event a global mesh network of the same
scale and span as the Internet were to exist because say Hyperboria, IPFS,
Scuttlebutt, or something like them just randomly caught on and spread like
wildfire we still do not want to be dependent on that network more than is
strictly necessary. We deeply value cooperation and a healthy
interdependence for the well being and prosperity of all people. However
we also deeply value self sufficiency and independence. In most regards
these two possibilities are not mutually exclusive.

Another thing worth noting is that many parts of the world don't even have
reliable electricity let alone Internet access. What this implies is that an
FRT's HIS should try to account for that. For example in some rare cases
where an educational video really is by far obviously the best way for an
FRT implementor to get some information across that's fine. But in most
cases it really isn't and precludes people from doing things like printing out
all of some targeted subset of the HIS at a library or somewhere similar to
enable undisrupted study.

Again it's totally fine and even great to choose to rely on each other for
various things. It makes everyone's life easier and bolsters everyone's
quality of life. The key word here however is choose. What's not so great is
to have to rely on each other. Sure there are many times in life doing so is
utterly unavoidable. Nonetheless there are just as many times when it
absolutely is and forming such unncessary dependences results in fragile
unhealthy individuals, communities, and relationships.

We cannot stress enough that understandability via complete Open
Knowledge Sets and self sufficiency are key to true technological freedom.

core requirements of the FRTs in addition to those defined by FOSS

1. The full Open Knowledge Set must be available for easy self sufficient
offline download, access, and use. The full entirety must be obtainable
in a very small and tenable number of downloads for any given release
of an FRT.

https://en.wikipedia.org/wiki/Mesh_networking
https://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think/
https://hyperboria.net/
https://ipfs.io/
https://www.scuttlebutt.nz/

2. There must be an OKSE(Open Knowledge Set Enumeration) that
documents everything available in the OKS so that people can reason
about the parts of it they may or may not already have and the parts of
it they may or may not want.

3. The OKSE shouldn't be fancy, full of ceremony, verbose, or otherwise
infantilizing of the newcomers. The bigger the OKSE is the easier it is
for it to drift from the required full accuracy we need. There may be
certain rare cases where it may make sense to have a brief rationale in
the OKSE explaining why certain common elements aren't present in
the official OKS or certain rare ones are. Ultimately small is an FRT
implementor's best friend. Nobody likes reading or writing this stuff
more than strictly necessary. Not to mention we need to keep
bureaucracy to the absolute minimum. The OKSE just has to clearly
exist, accurately enumerate everything, and be clear that the
technology at hand is an FRT both so people know they have certain
rights and to help further spread awareness of FRT ideology's
existence to potentially interested parties. That's it.

4. The OKSE must be easily and prominently visible/discoverable at the
FRT's Point Of Initial Discovery which will usually be something like
a FOSS project's home page on the web where an interested party
lands after first learning of the FRT's existence by some means.

5. For example in the case of software which is the primary author's area
of expertise the full OKS includes at least built executables, program
sources, the full built existing HIS, and any source materials from
which the HIS has been derived.

6. Again the built HIS must be easily downloadable for offline use in it's
entirety including both Ramp Up and Reference materials for both
users and developers. If the HIS can be shown/viewed online without
one needing to run a build on the HIS sources it can be just as easily
available offline to them too.

7. Sometimes the source material for the HIS of a FOSS project isn't
available. But even when it is (which happily is somewhat often) one
shouldn't have to deal with the hassle of setting up and running the
documentation build/generator tool and it's whole recursive tree of
dependencies just to build/get the HIS. It's an important skill which we
absolutely encourage everyone to have as we don't want a culture of
helpless dependency. However it's not one anyone must need to use
when dealing with FRTs.

8. We've seen many cases where we not only have to build the HIS from
source material but then the built HIS wound up being a static set of
HTML, CSS, and JavaScript files constituting an offline site of sorts.
Disturbingly often it then wouldn't work properly or at all unless we
ran a web server locally. Avoid this. We've seen plenty of good HIS
consisting of exactly this composition that don't require running a local
web (or any other) server to read them. We could just go and open
index.html in the offline documentation with our browsers and study.

9. If an FRTs offline HIS is an offline website clone with lots of HTML
files and some JavaScript the FRT should throw in some fully offline
search functionality if we're executing JavaScript anyway. The tooling
to do so is out there and it was so beautiful to behold when we've seen
it done.

10. There may be some edge cases where the HIS is something truly
dynamic because that's by far the best way to communicate certain
knowledge and that's fine. Odds are overwhelming though that your
FOSS project isn't one of them.

11. Highly dynamic (aspects/subsets of) a HIS like for example Jupyter
style notebooks requiring a local web server or ones with lots of videos
can sometimes be appropriate as they're the best way to communicate
certain knowledge. But often they are not and shouldn't be used lightly.
Remember to enable low tech study of as much of the HIS/OKS as
possible like for example printing out some documentation at a library.
Not to mention while artificial intelligence may quite likely change
this programatically searching through videos is nowhere near as easy

https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Web_server_directory_index
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook

as searching through text(or better yet other forms of structured but
still human friendly data). Even images while often necessary should
not be overly relied on as they're inaccessible to visually impaired
people using many kinds of screen reading software. Alt text and/or
other such captions should be provided wherever reasonably possible
as a mitigation. This also benefits the rather rare set of people
operating in text only environments.

12. On the subject of images and videos in offline website clones (or other
mediums that can embed/reference them in a self contained fashion)
prefer videos to GIFs. This is more the fault of things like browser
implementations than GIF itself. But currently the constant default
looping/repetition of GIFs can sometimes make it quite hard to parse
where the demo starts and stops. Nor can we pause, rewind, forward,
speed up, or speed down selectively. This interferes with proper study.

13. Related to the above mentioned failure mode we've seen situations
where there were videos rigged to autoplay, repeat, and had the video
controls (play, pause, etc) disabled resulting in an absolutely stellar
replication of the above GIF related issues. (In some cases this may
have been related to quirks in our browser and not the FOSS project
under examination.) Bottom line the videos in an FRT's HIS must not
autoplay and must not hide controls.

14. On the matter of internationalization a good faith attempt should be
made. We understand that many projects are badly underresourced and
can't do a perfect, decent, or even any sort of job here. Perhaps recent
advancements in artificial intelligence can help mitigate this. (It would
be nice for there to be a universal Esperanto style language which was
more neutral and widely used in addition to our native ones. If such a
thing ever truly emerges an FRT's HIS among other things should
probably prioritize this before focusing on other languages. Indeed
defining the specification for such a language may be a worthwhile
future FRT to build in and of itself for linguists with the background,
skills, and desire.)

https://moz.com/learn/seo/alt-text
https://en.wikipedia.org/wiki/GIF
https://en.wikipedia.org/wiki/Esperanto

15. Disturbingly often a FOSS project's built HIS just isn't available for
offline study. Don't do that. It must be downloadable for offline use for
all FRTs. Period.

16. We absolutely encourage people to be versed in using things like web
crawling and web mirroring software. But these skills absolutely
shouldn't be necessary just to study an FRT.

17. In some cases of extreme interest instead of giving up we wrote
custom web scrapers to achieve needed results. Sometimes we just
weren't otherwise able to coax the various crawling software into
getting more or less the exact set of pages we needed. Or we were but
then still had to do a lot of offline scraping/cleaning to eliminate
various cruft included in each of the hundreds of cloned pages which
added up to significant storage space. The fact that we had to do this
for something claiming to be open is absurd. FRTs must not force this
pain on anyone.

18. Examples of said cruft include ads which are fine online. They're even
encouraged when done ethically to help FRTs cover hosting costs and
hopefully get actual well deserved revenue. Ads are forbidden in
offline HIS versions.

19. The other cruft includes but is not limited to all sorts of extra
decorations, headers, footers, and sidebars with navigation links to
things on the broader project site like marketing fluff that most
reasonable people wouldn't consider within the scope of the OKS let
alone the HIS. This is not to say we hate/forbid things like decorations
in the HIS content filled parts of the page. We do not in any way want
to dictate expressive decisions made by the HIS implementors or
otherwise constrain their freedom. We are merely lamenting how
maddeningly hard it is to get a clean, cruft free copy of data that FOSS
creators wholeheartedly wanted to be spread. A crufty website clone is
not a valid form of the HIS for any FRT which has one.

20. Having discussed cruft/bloat let's explore in the opposite direction and
examine how small we can go. An FRT can absolutely be just a single

https://en.wikipedia.org/wiki/Web_crawler
https://www.eff.org/keeping-your-site-alive/mirroring-your-site
https://en.wikipedia.org/wiki/Web_scraping
https://docs.readthedocs.io/en/stable/advertising/ethical-advertising.html

text file with some educational information and/or program source. It
can even be a text snippet in a comment on some random forum post
provided it can be cleanly copy-pasted to a text file or word processor
document without cruft or formatting errors given the constraints of
typical current text editor, word processor, clipboard, web browser, etc
implementations. If the FRT's intended OKS is just the actual content
of the message and not really the way it's styled/displayed nothing
beyond the contents of the text snippet with the OKSE embedded at
the beginning is necessary. If styling/display matters for proper
experience of the material any source material needed to produce it
must be disclosed even if only as an adjacent FRTD compliant text
snippet or a link to some self contained file.

21. We've seen many projects where the contents of the HIS as defined by
the boundaries of what constitutes the project are not adequately
enumerated and we can't reason about what parts of it we have nor
what's even available. A failure mode to avoid by clearly enumerating
the whole HIS as part of the OKSE.

22. The whole built HIS must be obtainable in one go/click/download for
those who want just that and not the whole OKS purely for study
purposes without say downloading and running the actual software.
Again the HIS is everything outside of comments in the main program
source and empty marketing fluff on the website. Educational elevator
pitch type material is logically a part of the HIS's Ramp Up subset
where the HIS properly exists and the larger OKS where it doesn't. In
all but the smallest cases like one file FRTs the full HIS just by itself
must be obtainable as one download. Among other reasons this is for
scenarios where someone wants to study an FRT but cannot run the
software on the machines they have.

23. Some FOSS projects allow user comments to augment pages of the
web based HIS. These comments often have good information in them.
If an FRT implementor's project does this the augmented HIS must be
available for offline study as well as the regular version. This could be
from some kind of periodically generated or better yet near real time
snapshot. The same goes for things like officially maintained wikis on

https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Clipboard_(computing)
https://en.wikipedia.org/wiki/Elevator_pitch
https://en.wikipedia.org/wiki/Wiki

a both a wholesale and per article level as they are logically part of an
FRT's HIS. Wikis administered by external parties outside the FOSS
project should also strongly consider becoming FRTs.

24. A sufficiently large HIS should be broken into smaller useful (ideally
disjoint) subsets that are easily downloadable in a targeted fashion.
This way people with poor/limited Internet access and/or persistent
storage space can still study the parts of the FRT they find interesting
instead of being prevented from studying it entirely. This kind of
breakdown may not always be possible especially in cases where there
are a lot of tight interdependencies between the subsets. But a good
faith attempt should be made once the system gets large. Often failure
here means the FRT is poorly designed. But not always as the real
world often has a lot of intrinsic unavoidable complexity. Similar
principles apply to other parts of the full OKS.

25. Dependencies between any existing subsets of the HIS should be
specified as formally and machine readably as possible. (Perhaps
openly standardized methods of doing so will emerge or already exist
in some obscure place.) This facilitates grabbing useful subsets via
whole dependency trees both manually and in an automated fashion
with various kinds of packages managers. Similar principles apply to
other parts of an FRTs full OKS.

26. Dependencies between distinct FRTs should also be specified as
formally as possible for similar reasons. Imagine being able to use a
package manager pull in an FRT textbook whether by just by itself or
also with the whole dependency tree of prerequisites one needs to
understand it. Not to mention this can potentially save distributors and
packagers a lot of headaches if done in a standardized/reusable way.

27. We've seen cases where the Ramp Up subset of the HIS was available
for offline study but the Reference subset was not even though it very
much existed. An example is standard library documentation for
programming languages. Don't do that. This may enable people to get
started with a technology but will prevent them from progressing if
they need to look up a nontrivial detail while offline.

https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Standard_library
https://en.wikipedia.org/wiki/Programming_language

28. We've also seen cases where the full Reference subset of the HIS was
available for offline use but not the Ramp Up subset even though high
quality ramp up material existed. This is catastrophic as Reference
material is often useless if one doesn't have the conceptual background
to make sense of it that the Ramp Up part provides. This is a prime
example of Open Facts instead of Open Knowledge which is exactly
what we must avoid.

29. Analogously sometimes we've seen cases where Ramp Up + Reference
material is available offline on either the user level or
developer/internals level but not both. Must avoid trap.

30. On occasion we had what we believed to be a full HIS for a FOSS
project. Then we came upon something like an offline web page trying
to source a video from somewhere online instead of properly including
it in the offline HIS. Don't do this. It'd be one thing if it were some
recommended external community resource. However here we're
talking something that was clearly intended to be part of the official
HIS. This problem has also manifested for other knowledge filled HIS
material consisting purely of relatively simple things like text and
images. Full HIS availability means full HIS availability.

31. Some FOSS projects have the full HIS available for offline study but
make them difficult to find unless one is really looking on their
website. Don't be one of them. We are so burned out by frequent lack
of the offline HIS in the majority of FOSS projects that we may simply
assume they're not there and go study, use, and contribute to another
project which does this right instead.

32. There are scenarios where it's obvious that there is a complete HIS (or
useful subset) available for offline study but the link to it is broken. Be
sure this isn't your FOSS/FRT project dear reader. To get at the HIS the
FOSS project intended to be as public as possible we sometimes had to
use the same kind of techniques as when conducting a penetration test
searching for IDOR(Insecure Direct Object Reference) vulnerabilities.
Penetration testing and hacking skills are something we strongly

https://en.wikipedia.org/wiki/Penetration_test
https://en.wikipedia.org/wiki/Insecure_direct_object_reference

encourage everyone to have. But they should not be necessary even in
their most basic forms to use/study an FRT.

33. We've also dealt with FOSS projects which used to have the offline
HIS available but then no longer seemed to with newer releases. The
HIS just wasn't obviously or nonobviously linked/visible anywhere on
their websites. However the HIS was actually there if we used IDOR
vulnerability hunting type techniques to find them. We really really
wish we were making this up. All the hard work FOSS projects put
into assembling the HIS was wasted for those users and contributors
that don't have reliable Internet access, absurd amounts of patience,
and penetration testing skills. Avoid this.

34. Then there are the FOSS projects that used to have a full offline HIS
but then actually stopped instead of just seeming to as above. We weep
for the future.

35. There are FOSS projects/packages where there's a full offline HIS and
it's installed on a system by default. However when one invokes the
help functionality of that project it either a) points to the online set
instead of the offline set present on the system and/or b) fails to
disclose the presence of the offline set at all. To add insult to injury
sometimes the rather undiscoverable offline HIS is quite large and eats
significant persistent storage space. The endlessly innovative ways in
which FOSS projects manage to pull crushing defeat from the very
jaws of victory itself never cease to astound us. Yet another failure
mode to avoid and a small thing to change for a large impact. There
needs to be an unbroken discovery chain from the main entry points of
the HIS to any other part of the HIS.

36. It should go without saying that a properly designed offline HIS
references the official online one for easy discovery of Sources Of
Truth so to speak.

37. Sometimes powerful help systems that then correctly point to a robust
local HIS exist but it's not obvious how to invoke said help system or
even that it exists. Varying interfaces have varying constraints that may

or may not allow broadcasting of the help system's existence in a
clearly visible yet unobtrusive fashion. But a good faith attempt should
be made.

38. We've seen situations where there's a full offline HIS consisting of
very solid Ramp Up and Reference material, it's obvious how to
invoke the generic main help functionality, but then the help points us
to somewhere in the Reference or Late Ramp Up parts of the material.
Frustratingly enough there exists good Early Ramp Up material for
basic mental model building and pointers to the other available help.
But the system still failed to point to it. FRTs must avoid making that
mistake. For FOSS projects this is another tiny fix for humongous
gains.

39. With FRTs the most important thing for implementors to focus on is
capturing as much of the knowledge they want to share as possible into
the OKS without being overly concerned how that's distributed
amongst the set's parts. That said the OKS parts should be kept as
uncoupled/as reasonably possible. We've seen FOSS projects where
the text files making up the HIS were embedded into the built
executable and couldn't also be read by other text viewers/editors
present on the system. Avoid coupling like this.

40. An FRTs offline HIS must be published in at least one standardized
open format (or better yet FRTD compliant format). If the offline HIS
is a bundle consisting of many different kinds of files at least one of
the bundles must consist of purely open formats. This requirement will
likely be tightened in future FRTD versions as FRTs hopefully become
more widespread.

41. Most real life systems including FRTs have
dependencies/subsystems/subcomponents they build on. Ideally FRTs
would be built from the ground up in terms of other FRTs. Such an
FRT is defined to be a Rank 1 Freedom Respecting Technology or
R1FRT for short.

42. An FRT with only FOSS and FRT dependencies is defined to be a
Rank 2 Freedom Respecting Technology or R2FRT for short.

43. An FRT which has any kind of dependency that's not FOSS or FRT is
defined as a Rank 3 Freedom Respecting Technology or R3FRT for
short.

44. When talking about FRTs it can occasionally be prudent to state what
version of the FRTD they comply with to better assist people being
able to reason about what kinds of freedoms the FRT affords them.

45. A FOSS project seriously trying to comply with the FRTD in good
faith but unable to do so is defined to be a Near Freedom Respecting
Technology or NFRT for short to distinguish it from other FOSS
projects that don't care enough to try.

46. The above taxonomy is oversimplified and should be refined later. But
it's not a priority now. It's good enough to facilitate the maximum level
of precision we expect to see in the vast majority of near future
conversations. We're idealistic pragmatists. Not bureaucrats. Our
priorities are set accordingly.

47. Suppose one implemented an adapter for the interface of a mere FOSS
or totally unfree external system to make using that system more
comfortable. Since the external system is not logically part of the
adapter's implementation it doesn't prevent the adapter from being an
FRT. Adapters should be clearly identified as such and clearly specify
the external systems they are wrapping. All other build and execution
time dependencies of the adapter proper must of course be FRTs.

48. Use sane default (file) names for things like projects, the offline HIS,
etc so that they can be searched for in an automated manner on one's
computer. FRT implementors should avoid crazy characters that cause
issues in things like shell commands. We're tired of trying to figure out
how to name a file holding the HIS for the TLA*\F+ project so that we
actually have a chance of being able to find it later.

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Command-line_interface

49. Given how much we discussed the HIS component of an FRT's OKS
we want to emphasize that the FRTD is not necessarily a call for a
bigger HIS. It's a call to think system wide about the whole OKS. It's a
call to ensure that the full existing OKS is adequately open,
discoverable, obtainable, retrievable, and usable. It's a call to make
sure the whole OKS remains so as new components that logically
belong there come into existence or old components are enlarged. This
is the bare minimum prerequisite needed to practically ensure the
freedoms our predecessors intended.

concluding remarks

Hopefully after having read thus far it should now be obvious that many
technologies even though compliant with the various FOSS definitions still
fail to provide practical technological freedom. A newer clearer vision for
technological freedom was long overdue and this is our attempt to rectify
the situation.

In some cases the problems mentioned here are deliberate. Some FOSS
projects are frankly just bait by predatory entities to tempt vulnerable
targets. These targets could be idealistic people. These targets could be
strategic thinking organizations trying to maximize their options by
avoiding unfree systems locking them in. Either way they wind up trapped
in expensive commercial "support" contracts instead.

To be clear we have nothing against entities selling FOSS products and/or
support for them. We all need to make a living. Our issue is with so called
"open" systems not providing us the tools to help/serve ourselves when
clearly they (almost) exist or could exist with some not very labor intensive
modifications.

This document is not for the makers of the predatory FOSS projects
mentioned above. This is for the many FOSS makers that seem to have no
visible/obvious bait profit motive, that hopefully have some kind of healthy
profit acquisition capabilities, that have a genuine enthusiasm for open
knowledge, and that have a genuine desire to make the world a better place.
It's here to make explicit the things they accidentally/misguidedly

omit/misprioritize.

We hope that this document inspires the creation of many FRTs right from
the start, independent evolution of FOSS projects into FRTs driven by their
developers, and also such evolution driven by user request. We hope
organizations trying to bolster their public image and/or win developer
goodwill start developing proper FRT initiatives instead of just mere FOSS
initiatives.

Are the requirements stated herein more work for creators? Quite possibly.
Though many FOSS projects are much closer than they think to being
FRTD compliant and only need to make quite minor corrections for major
benefit.

Aren't implementors already often horribly badly overworked,
underresourced, and sadly stuck dealing with entitled users? Very much yes.
Sadly the primary author is ashamed to have been among those entitled
users at points in the past.

So why then should FOSS projects aim for FRTD compliance when they
have limited resources to invest? Often when one has limited resources and
a big vision they wish to execute the best use of those limited resources is
conducting activities that will bring in more resources until there are at least
sufficient resources for the situation at hand.

How do contributors to FOSS projects come about once they discover the
project by some means? They try meaningfully studying it beyond the
initial marketing fluff to see if it's suitable for their objectives whether
directly or with some reasonable amount of customization work. Then once
they've studied enough to meaningfully use the project and do so for a while
they get a deep gut feeling of its current behavior/workings and a sense of
the gap between those and the desired behavior/workings. At that point they
finally know enough to contribute meaningful fixes that the project
maintainers would likely find useful and incorporate. After some time if
there's a consistent track record of contributions they themselves may be
promoted to a maintainer if that's what they want. This is what the FOSS
contribution pipeline often looks like.

Often what happens to this pipeline in non-FRT FOSS projects is that it gets
disrupted very early on by newcomers not being able to meaningfully
access/study the full Open Knowledge Set in a reasonably self sufficient
manner let alone use it, further develop it, and contribute those
developments back. FRTD compliance should be prioritized over other
often less important feature work because True Open Knowledge is the
meta feature that builds the community around a project and thus helps
scale the resources closer to what's really needed for other development.
The alternative is a death spiral of burnout once resources run out.

Open the knowledge and the builders will come.

concluding demo

This snippet is a Freedom Respecting Technology with itself as it's full
Open Knowledge Set. It's a recipe to mitigate the fact that Zypper doesn't
have a proper autoremove command like many competing package
managers. This avoids wasted disk space at best and potential privilege
escalation vulnerabilities from setuid executables left by unneeded
packages at worst. Autoremove can be emulated as follows:

zypper rm -u `zypper pa --unneeded | tail -n+5 | cut -d'|' -f3`

