
Freedom Respecting Technology Definition
bringing about the next generation of FOSS

(obsolete) version 1.0.0 | 2023-06-29 | check here for newer versions

note: This is (generated from) a self contained (though very
sloppily/unidiomatically) handwritten HTML file without any other
embedded resources and can thus easily be saved for offline reading. It's
rather annoying that mobile browsers don't have HTML saving
functionality but this is a defect with them not WHATWG HTML as an
open file format. We'll likely take steps to address this later. Copy and share
as widely as possible but don't make modifications without consulting the
authors first.

author information

initiator, primary definition author, and benevolent leader for life:
Georgiy Treyvus - makesourcenotcode the_swirly_thing gmail le_pointer
com

reviewers, coauthors, supporters, and other helpers:
{insert (nick)names, pseudonyms, and/or email addresses one per line as
desired by contributors here}

preamble

Technology in various forms is influencing if not outright controlling ever
more aspects of our lives with no signs of slowing down. Both on an
individual and collective/collaborative level we must understand and
control the technology we use or it will control us. The latter may happen
by itself in the event of strong artificial intelligence. More likely it may
happen by the hands of the few developers who truly understand it and who
have a depressingly high probability of being employed/bribed/coerced by
unethical corporations and/or regimes. However the latter scenario comes
about it's absolutely unacceptable.

Thankfully we are not alone in our sentiments here. Long before most of

https://makesourcenotcode.github.io/freedom_respecting_technology.html#frtd
https://en.wikipedia.org/wiki/HTML
https://html.spec.whatwg.org/
https://en.wikipedia.org/wiki/Open_file_format

this document's authors were born people started work in this direction. For
example Richard Stallman formalized these sentiments as well as certain
good cultural tendencies he had seen with regards to the sharing of
knowledge which were slowly disappearing into what became the GNU
Project and the Free Software movement more generally. This also inspired
at least indirectly other movements of free (as in freedom)
culture/technology including but not limited to Open Source and Creative
Commons. All in all these movements have done a tremendous amount of
good and are huge steps in the right direction. Ultimately it is on the
shoulders of these giants upon which we stand as we write this document in
an attempt to progress yet further.

Herein we attempt to fully articulate and address longstanding and growing
frustrations we've been feeling for years. These originate mainly with
regards to Open Source Software, to a lesser extent Free Software, and
extend well beyond just software into technology more generally.

While many FOSS(Free and Open Source Software) projects are often
made in good faith and we often can't express in words how deeply we
appreciate some of them the fact is that the vast majority of (sometimes
very promising) FOSS projects fail badly to properly deliver on certain
critical aspects of openness, accessibility, and technological freedom. In
spite of being fully compliant with things like the GPL(GNU General
Public License), FSD(Free Software Definition), and/or OSD(Open Source
Definition) thus being theoretically free many FOSS projects fail in making
technological freedom practical. Unfortunately there are a lot of mostly
artificial barriers that (usually unintentionally) stand in the way of many
interested people (including very skilled competent ones) exercising the
crucial freedoms of using, studying, understanding, modifying, copying,
(re)distributing, further developing, and contributing back to FOSS projects
in a truly free, autonomous, and self sufficient manner.

Thus we seek to develop this Freedom Respecting Technology Definition
(or FRTD for shorthand) driven by the principles of radical
understandability, radical discoverability, radical accessibility, and radical
self sufficiency. (A crucial consequence of that last bit is that it can, should,
and hopefully ultimately will also lead to healthier and significantly more

https://en.wikipedia.org/wiki/Richard_Stallman
https://stallman.org/
https://en.wikipedia.org/wiki/GNU_Project
https://www.gnu.org/gnu/thegnuproject.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Open-source_model
https://opensource.org/
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/philosophy/free-sw.en.html
https://opensource.org/osd-annotated

resilient individuals and local communities.) We're aiming to carefully
study, formalize, and explicitly forbid as many of the devastating failure
modes we've seen in FOSS projects at both the user and developer level as
we can. (We're also aiming to blur if not outright eliminate depending on
context the mostly if not entirely artificial boundaries between users and
developers.) We also aim to carefully study, highlight, formalize, and
explicitly require at least the bare minimum set of best practices which
some FOSS projects have engaged in (if only accidentally in some cases)
that have given end users real practical technological freedom. Though we
won't be able to do it perfectly we aim to have something that as much as
possible formalizes and captures the very essence of technological freedom.
We're aiming for something which can guide ourselves and other well
meaning developers of technologies including but not limited to software,
firmware, hardware, protocols, technical specifications, algorithms,
scientific research, knowledge, media (informative and artistic), and
combinations thereof(which is what most things are) towards building a
truly free and healthy world.

While this document is intended primarily to address problems with Free
Software and Open Source Software a lot of the issues discussed here
pertain to all software and to technology more generally. Thus we hope this
will be read by, of interest to, and acted upon by a wide and diverse
audience. We feel that this document can help even developers of closed
source software make many aspects of it better as well as provide good food
for thought to more moderate movements such as Fair Source. This is
because as one often hears freedom is not free whether the cost comes in
the form of effort, labor, time, money, or something else. For a technology
to support freedom even partially let alone completely it must have certain
qualities. Not trying hard to take away people's technological freedoms is
not enough. Active steps must be taken to add qualities that create and
preserve freedom. Some side effects of technologies having some of these
qualities are better user and developer experiences as well as better internal
design.

In addition to this definition we intend to release a few FRTD compliant
technologies to the public both for their personal utility and more crucially
for peer review. These projects are intended to demonstrate and capture the

https://fair.io/

spirit of Freedom Respecting Technologies (or FRTs for shorthand) in ways
that even the best possible version of this document will likely fail to. We
want people to feel in a hands on manner the difference between Freedom
Respecting Technologies and typical FOSS. We want people to feel it
viscerally. These example projects will almost certainly come in the form of
software as things like hardware for example are largely outside of our
current areas of expertise. Help realizing FRTs in other mediums is
enthusiastically welcomed and would be deeply appreciated.

We want to test the approachability, discoverability, learnability, and
understandability of these sample projects on a wide variety of people from
both the user and developer perspectives. We want to assure that skilled
developers aren't adversely affected by any of the requirements of the
FRTD. We want to see if novice developers find the projects approachable
for hacking on. We want to see how quickly and easily a random user can
cross into developer territory to modify a given FRT to be more in line with
their desires. Again being able to do this in theory is not enough. It must be
practical.

Finally we hope that this definition and the technologies we release will be
the beginning of a movement at least as large and successful as FOSS was.
We dream of a world where people can combine FRTs realized in various
mediums like hardware, software, etc into full solutions to their
technological needs and wants.

main thesis

Failure of FOSS projects to provide the crucial technological freedoms we
seek stems from their failure to be reasonably understandable to people
(even sometimes ones with significant expertise) in a reasonably self
sufficient manner. Understandability and self sufficiency are the two
absolutely necessary prerequisites for technological freedom. Hence we
examine what it takes to provide both.

Open Source is an absolutely necessary but often insufficient subset of
Open Knowledge which is the real goal and the key to understandability.
The crucial but still ultimately narrow focus on source access often distracts

us from focusing holistically on proper access to the full Open Knowledge
Set which is what truly matters.

For example in the case of software another important element of the
Knowledge Set is information exposed by the UI(user interface) in the
environments where that software can be run. Another even more important
element is both the built and source forms of the Support Information like
any official written documentation, diagrams, instructional/demonstrational
videos, and so forth that may exist.

Indeed a lot of what this document will focus on is this Support
Information. Most systems are useless without it from both a user and
developer perspective. Depending on how self describing the components
of the technology/system in question are the amount of needed Support
Information will vary. However for all but the simplest technologies it will
be necessary. Happily many (though not a majority of) FOSS projects do a
somewhat decent job of providing this information in circumstances where
most reasonable people would deem it necessary and/or desirable. The main
issue we have is with how it's not accessible in a reasonably self sufficient
manner.

Ultimately understandability comes from the full Open Knowledge Set
being as ubiquitous and easy to access and cleanly copy as humanely
possible in both built and source forms. At the very least this should be
possible in wholesale fashion and also ideally in more targeted subsets
which aids certain kinds of accessibility we'll touch on later.

While we're on the subject of open knowledge it is important to be
cognizant that knowledge is not quite the same thing as raw factual
information. Knowledge is contextualized information and the FRTD is
about Open Knowledge and not Open Facts. This context is best thought of
as some meta facts that highlight/enumerate the existence of all the other
facts and help them make sense in some kind of conceptual framework.
Often a small bit of carefully placed context can take a system from
absolute zero to literal superhero.

The other key to freedom is technologies enabling self sufficiency. It's

https://en.wikipedia.org/wiki/User_interface

crucial to maximize this as much as possible by minimizing the things one
is dependendent on to study, use, and further develop a technology.

One very important thing this means is the full Open Knowledge Set being
cleanly enumerated and easily available for offline use. Not just the main
source code and executables as is often the case.

Critically special emphasis here is on built versions of the Support
Information Set. At the very least it must be easily possible to easily
enumerate, identify, and conveniently obtain the full Support Information
Set. It may also in some cases make sense to make targeted subsets of the
Support Information Set easily identifiable and downloadable.

The ability to study, work, and otherwise operate offline as much as
possible is hugely important and unfortunately significantly undervalued by
a disturbingly large portion of people at least up to the point where they find
themselves needing it and not having it. FOSS projects requiring users
and/or contributors to have Internet access more than is strictly necessary
are absolutely unacceptable. It is crucial that FOSS projects both encourage
a taste for as well as enable self sufficiency to the greatest degree possible.
True technological freedom means among other things not being a dog on
the leash of one's Internet provider.

This document's primary author lives in New York City which is a
relatively prosperous and technology heavy corner of the world.
Nonetheless while he usually has access to high speed Internet or at least
some kind of Internet the scenarios where he doesn't have it but could use it
occur often enough to be noticeable, annoying, and a cause of lost
productivity in both research and work.

Furthermore the primary author is both friends with and acquainted with
several people who recently/currently did/do not have Internet access at
their place of residence or at best have spotty access. In many of these cases
these people simply can't afford it. In other cases while they can afford it
they are still on a sufficiently tight budget that the expense of buying
Internet access was not justified as they could access it often enough not to
be totally crippled in their work at their local library, in some cases through

their local university, in some cases via the extortionate data plans for their
mobile phones, and sometimes due to the generosity of neighbors who let
them borrow their WiFi. This is true even now in 2023 and was even more
true before the coronavirus pandemic(especially in late 2016 when work on
this FRTD first started).

Some people the primary author knows even go so far as to deliberately not
buy Internet access even though they can easily afford it because they find
it to be too much of a distraction in their life and that it gets in the way of
both productivity and family time. Yet even they have sometimes been
significantly inconvenienced by not being able to download certain
documentation that would have been quite useful for informational,
educational, productivity, and/or entertainment purposes. The way FOSS
projects inadvertently punish such people for making a rational and healthy
lifestyle choice to not always be connected is unacceptable.

Another important point to keep in mind is security. Some friends of the
primary author (as well as to a lesser extent the primary author as well at
times) have made a point of not being connected to the Internet more than is
strictly necessary. It is well known that exposure to a network especially
one as big and potentially dangerous as the Internet significantly increases
the chances of compromise. Any FOSS project that forces people to be
connected to the Internet for it's study/use more than is necessary
encourages them to potentially jeopardize their security and essentially
punishes them for trying to stay safe. This is unacceptable. We won't even
start on the kind of havoc this wreaks on people trying to get important
work done whose threat model warrants using air gapped computers totally
disconnected from any network. This has been a real issue for a scientific
software consultancy the primary author interviewed with where people
working on sensitive projects temporarily had to leave a secure
room/facility to go look up some Support Information of FOSS tools they
were using and then try to use it from memory. This also undoubtably is an
issue for human rights activists and organizations trying to leverage
technology to counteract the force/power amplification that technology also
gives their oppressors.

Of course the key thing to keep in mind is that this is the kind of stuff that's

https://en.wikipedia.org/wiki/Threat_model
https://en.wikipedia.org/wiki/Air_gap_(networking)

happening in one of the more prosperous regions of the world even in the
year 2023. In many other places these problems are exacerbated by many
orders of magnitude. In many less prosperous places Internet access is
either notoriously unreliable or (almost) nonexistent. Ultimately FOSS
projects that that force users to constantly need to be online to use or study
them inadvertently perpetuate and increase inequality almost as much as
some actively malicious corporate monopolistic interests. The rich will be
able to study, learn, get better educated, get more skills, build better
infrastructure, get better incomes, and get yet more disproportionately rich
both with regards to money and overall quality of life. The poor and less
fortunate remain largely trapped in their cycle of misery and desperation.
They never get a meaningful chance to lift themselves up from that
situation and into a better, more prosperous, and happier life. Both
advantages and disadvantages compound exponentially in feedback loops
the latter of which we must avoid. Let's not mince words here. Any FOSS
project which does not enable self sufficiency to the largest extent
reasonably possible is an utter disgrace.

Instead of forcing people to have to be lucky all the time with regards to a
reliable Internet connection any halfway decent FOSS project would make
it so that if someone gets lucky just once they can grab a comprehensive
Support Information Set along with any other desired parts and then be able
to work self sufficiently regardless of future network access. They would
also be able to help their friends and people in their community by making
copies for them. If they're feeling more entrepreneurial perhaps they can
even sell copies. This is something they may also need to do just to break
even depending on the exact distribution mode to offset the cost of the
distribution media. FOSS projects really could do worse than enabling self
sufficiency, more generosity, more trade, and accelerated development for
people especially in less prosperous communities. There's a world of
difference between people having to get lucky once and having to be lucky
all the time. (Of course ideally people wouldn't even have to get lucky once
but that's impossible.)

Furthermore even in the more economically prosperous parts of the world
unnecessary dependence on an Internet connection is very unhealthy both
for individuals and communities. The Internet for the most part has a rather

tree like and hierarchic structure which has several unpleasant
ramifications.

Even in the world's less oppressive countries there exist Internet kill
switches. These have rarely been used because the regimes of these less
oppressive countries often find the Internet to be yet another useful medium
via which to spread propaganda and disinformation. Another reason is
regimes understand that some limited freedoms including but not limited to
a relatively uncontrolled Internet often make for significantly more
productivity and commerce among their populations resulting in
significantly more taxable revenue. Finally because of it's hierarchic nature
most Internet traffic has to pass through certain centralized exchange points
where it can potentially be spied on or otherwise manipulated/censored. Yet
more devastatingly these centralized points can be shut down by a regime if
the cost-benefit dynamic of keeping the Internet working changes. One
reason might be people are using it to organize en masse in an attempt to
address legitimate grievances and no amount of easy spying enabled by the
Internet's hierarchic topological structure can contain/disrupt the movement
as would be possible were it still small. Or it could be something much
more mundane like misguided attempts by many countries trying to stop
cheating on the national exam day.

Perhaps worst of all even if country A's regime is relatively benevolent and
doesn't want to shut down the Internet there for malicious reasons the fact is
country B's regime does and perhaps one day will. Just about all countries
have enemies whether open or secretive. Needless to say the centralized
exchange points at or near the root of the tree in any given country make an
extremely appealing target for (the intelligence agencies of) enemy
countries and can safely be assumed to have been compromised covertly or
otherwise by one or more of them. One day some country may very well
shut down some other's Internet and with it a significant part of the critical
infrastructure the latter depends on resulting in significant devastation. Of
course we're getting way ahead of ourselves here. A totally random natural
disaster can achieve similar effects and a disturbingly large portion of any
given country's critical infrastructure isn't even ready to handle that.

You dear reader(s) do not want to be relying on the Internet more than is

https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Internet#Routing_and_service_tiers
https://en.wikipedia.org/wiki/Network_topology
https://www.bbc.com/news/technology-40118378
https://news.usc.edu/45114/internet-outages-in-the-u-s-doubled-during-hurricane-sandy-usc-study-finds/

strictly necessary. We believe in a global network transcending all borders
that people can use to collaborate, exchange ideas, solve pressing global
problems, and organize mutual aid. The world needs such a network and
needs it the millennium before last at the absolute latest. Unfortunately that
network is not the Internet in it's present form and likely won't be the
Internet in any of its future forms either though we desperately hope we're
wrong about that. Even in the event a global mesh network of the same
scale and span as the Internet were to exist because say Hyperboria, IPFS,
Scuttlebutt, or something like them just randomly caught on and spread like
wildfire we still do not want to be dependent on that network more than is
strictly necessary. We deeply value cooperation and a healthy
interdependence for the well being and prosperity of all people. However
we also deeply value self sufficiency and independence. In most regards
these two possibilities are not mutually exclusive.

Another thing worth noting is that many parts of the world don't even have
reliable electricity let alone Internet access. What this implies is that the
Support Information Set that comes with an FRT should try to optimize for
that. For example in some rare cases where an educational video really is by
far obviously the best way for an FRT implementor to get some information
across by all means do that. But in most cases it really isn't and precludes
people from doing things like printing out all of some targeted subset of the
Support Information Set at a library or somewhere similar to enable
undisrupted study.

It's totally fine and even great to choose to rely on each other for various
things. It makes everyone's life easier and bolsters everyone's quality of life.
The key word here however is choose. What's not so great is to have to rely
on each other. Sure there are many times in life doing so is absolutely and
utterly unavoidable. Nonetheless there are just as many times when it
absolutely is and forming such unncessary dependences results in fragile
unhealthy individuals, communities, and relationships.

We cannot stress enough that understandability via complete Open
Knowledge Sets and self sufficiency are key to true technological freedom.

core requirements of the FRTs in addition to those defined by FOSS

https://en.wikipedia.org/wiki/Mesh_networking
https://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think/
https://hyperboria.net/
https://ipfs.io/
https://www.scuttlebutt.nz/

1. The full Open Knowledge Set must be available for easy self sufficient
offline download, access, and use. It must be obtainable in one
go/download for any given release of an FRT.

2. There is an Open Knowledge Set Enumeration that documents
everything available in the Open Knowledge Set so that people can
reason about the parts of it they may or may not already have and the
parts of it they may or may not want.

3. The Open Knowledge Set Enumeration must be easily and
prominently visible/discoverable at the FRT's Point Of Initial
Discovery which will usually be something like a FOSS project's home
page on the web where an interested party lands after first learning of
the FRT's existence by some means.

4. For example in the case of software which is the primary author's area
of expertise the full Open Knowledge Set includes at least built
executables, program sources, the full built existing Support
Information Set, and any source materials from which the Support
Information Set has been derived.

5. Again the built Support Information Set must be easily downloadable
for offline use in it's entirety including both Ramp Up and Reference
materials. If it can be shown/viewed online without the an outsider
needing to run a build on the Support Information Set sources it must
be just as easily available offline to them too.

6. Sometimes the source material for the Support Information Set of a
FOSS project isn't available. But even when it is (which happily is
somewhat often) one shouldn't have to deal with the hassle of setting
up and running the documentation build/generator tool and it's whole
recursive tree of dependencies just to build/get the Support
Information Set. While that's an important skill which we absolutely
encourage everyone to have it's not one anyone should need to use
when dealing with FRTs.

7. We've seen many cases where we not only have to build the Support
Information Set from source material and the built Support
Information Set wound up being a static set of HTML, CSS, and
JavaScript files. Disturbingly often it then wouldn't work properly or at
all unless we ran a web server locally. Avoid this. Remember that
plenty of good Support Information Sets consisting of such materials
exist that don't require running a local web (or any other) server to read
them.

8. There may be some edge cases where the Support Information Set is
something truly dynamic because that's by far the best way to
communicate certain knowledge. Odds are overwhelming though that
your FOSS project isn't one of them.

9. Highly dynamic (aspects/subsets of) Support Information Sets like for
example Jupyter style notebooks requiring a local web server or ones
with lots of videos can sometimes be appropriate as they're the best
way to communicate certain knowledge. But often they are not and
shouldn't be used willy nilly. Remember to enable low tech study of an
FRT like for example printing out some documentation at a library.
Not to mention while artificial intelligence may quite likely change
this programatically searching through videos is nowhere near as easy
as searching through text or better yet other forms of structured but
still human friendly data. Even images while often necessary should
not be overly relied on as they're inaccessible to visually impaired
people using many kinds of screen reading software. Alt text and/or
other such captions should be provided wherever reasonably possible
as a mitigation. This also benefits the rather rare set of people
operating in text only environments.

10. On the matter of internationalization a good faith attempt should be
made though we understand that many projects and underresourced
and can't do a perfect or even decent job of this. Perhaps recent
advancements in artificial intelligence can help mitigate this. (It would
be nice for there to be a universal Esperanto style language we could
all agree to use and learn in addition to our native ones. If such a thing

https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://moz.com/learn/seo/alt-text
https://en.wikipedia.org/wiki/Esperanto

ever truly emerges Support Information Sets among other things
should prioritize this before focusing on other languages.)

11. Disturbingly often the built Support Information Set just isn't available
for offline study. Don't do that. It must be available for offline study.
While we encourage people to be versed in using things like web
crawling and web mirroring software these skills absolutely shouldn't
be necessary just to study an FRT.

12. We've seen many projects where the contents of a Support Information
Set as defined by the boundaries of what constitutes the project are not
adequately enumerated and we can't reason about what parts of it we
have nor what's even available. Don't do that. Clearly enumerate the
whole Support Information Set.

13. The whole Support Information Set must be obtainable in one
go/click/download for those who want just that and not the whole
Open Knowledge Set purely for study purposes without downloading
and running the actual software.

14. Sufficiently large Support Information Sets should be broken into
smaller useful subsets that are easily downloadable in a targeted
fashion. This way people with poor/limited Internet access and/or
persistent storage space can still study the parts of the FRT they find
interesting instead of being prevented from studying it entirely. This
kind of breakdown may not always be possible especially in cases
where there are a lot of tight interdependencies between the subsets but
a good faith attempt should be made. Often this means the FRT is
poorly designed but not always as the real world does sometimes have
a lot of intrinsic unavoidable complexity. Similar principles apply to
other parts of the full Open Knowledge Set.

15. Dependencies between any existing subsets of the Support Information
Set should be specified as formally and machine readably as possible.
This facilitates grabbing useful subsets via whole dependency trees
both manually and in an automated fashion with various kinds of

packages managers. Similar principles apply to other parts of an FRTs
full Open Knowledge Set.

16. Dependencies between distinct FRTs should also be specified as
formally as possible for similar reasons. Imagine being able to use a
package manager pull in an FRT textbook whether by just by itself or
also with the whole dependency tree of prerequisites you need to
understand it.

17. We've seen cases where the Ramp Up subset of a Support Information
Set was available for offline study but the Reference Part was not even
though it very much existed. Don't do that. This may enable people to
get started with a technology but will prevent them from progressing if
they need to look up a nontrivial detail while offline.

18. We've also seen cases where the Reference subset of a Support
Information Set was available for offline use but not the Ramp Up part
even though high quality ramp up material existed. This is catastrophic
as Reference material is often useless if one doesn't have the
conceptual background to make sense of it that the Ramp Up part
provides. This is a prime example of Open Facts instead of Open
Knowledge which is exactly what we want to avoid.

19. Many FOSS projects have full Support Information Sets available for
offline study but make them difficult to find unless one is really
looking on their website. Don't be one of them. We are so burned out
by lack of offline Support Information Sets in the majority of FOSS
projects that we may simply assume they're not there and go study,
use, and contribute to another project which does this.

20. There are scenarios where it's obvious that there is a complete Support
Information Set (or useful subset) available for offline study but the
link to it is broken. Be sure this isn't your FOSS/FRT project dear
reader. To get at the Support Information Set the FOSS project
intended to be as public as possible we sometimes had to use the same
kind of techniques as when conducting a penetration test and searching
for IDOR(Insecure Direct Object Reference) vulnerabilities.

https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Penetration_test
https://en.wikipedia.org/wiki/Insecure_direct_object_reference

Penetration testing and hacking skills are something we strongly
encourage everyone to have. But they should not be necessary even in
their most basic forms to use/study an FRT.

21. We've also dealt with FOSS projects which used to have offline
Support Information Sets but then no longer seemed to with newer
releases. They just weren't obviously or nonobviously linked/visible
anywhere on their websites. However the Support Information Set was
actually there if we used IDOR vulnerability hunting type techniques
to find them. All the hard work FOSS projects put into assembing the
Support Information Set was wasted for those users and contributors
that don't have reliable Internet access. Avoid this.

22. There are FOSS projects/packages where there's a full offline Support
Information Set and it's installed on a system by default. However
when one invokes help functionality of some kind it either a) points to
the online set instead of the offline set present on the system and/or b)
fails to disclose the presence of the offline set at all. The endlessly
innovative ways in which FOSS projects manage to pull crushing
defeat from the very jaws of victory itself never cease to astound us.
Yet another failure mode to avoid. There needs to be an unbroken
discovery chain from the main entry points of a Support Information
Set to any other part of the set.

23. It should go without saying that a properly designed offline Support
Information Set references the official online ones for easy discovery
of Sources Of Truth.

24. With FRTs the most important thing for implementors to focus on is
capturing as much of the knowledge they want to share as possible into
the Open Knowledge Set without being overly concerned how that's
distributed amongst the set's parts. That said the set's parts should be
kept as uncoupled/as reasonably possible. We've seen FOSS projects
where the text files making up the Support Information Set were
embedded into the built executable and couldn't also be read by other
text viewers/editors present on the system. Avoid coupling like this.

25. An FRTs Support Information Set must be published in at least one
standardized open format (or better yet FRT compliant format). This
requirement will likely be tightened in future FRTD versions as FRTs
become more widespread.

26. Most real life systems including FRTs have
dependencies/subsystems/subcomponents they build on. Ideally FRTs
would be built from the ground up in terms of other FRTs. Such an
FRT is defined to be a Rank 1 Freedom Respecting Technology or
R1FRT for short.

27. An FRT with only FOSS and FRT dependencies is defined to be a
Rank 2 Freedom Respecting Technology or R2FRT for short.

28. An FRT which has any kind of dependency that's not FOSS or FRT is
defined as a Rank 3 Freedom Respecting Technology or R3FRT for
short.

29. Suppose one implemented an adapter for the interface of a mere FOSS
or totally unfree external system to make using that system more
comfortable. Since the external system is not properly part of the
adapter's implementation it doesn't prevent the adapter from being an
FRT. Adapters should be clearly identified as such and clearly specify
the external systems they are wrapping. All other build and execution
time dependencies of the adapter proper must of course be FRTs.

30. Use sane default (file) names for things like projects, Support
Information Sets, etc so that they can be searched for in an automated
manner on one's computer. You should avoid crazy characters that
cause issues in things like shell commands. We're tired of trying to
figure out how to name a file holding say a Support Information Set
for the TLA*\F+ project so that we actually have a chance of being
able to find it later.

concluding remarks

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Command-line_interface

Hopefully after having read thus far it should now be obvious that many
technologies even though compliant with the various FOSS definitions still
fail to provide practical technological freedom. A newer cleaner vision for
technological freedom was long overdue and this is our attempt to rectify
the situation.

In some cases the problems mentioned here are deliberate. A lot of FOSS
projects are frankly just bait by predatory entities to lure idealistic people
and strategic thinking organizations trying to maximize their options by
avoiding unfree systems locking them in into expensive commercial
"support" contracts instead.

To be clear we have nothing against entities selling FOSS products and/or
support for them. We all need to make a living. Our issue is with so called
"open" systems not providing us the tools to help/serve ourselves when
clearly they (almost) exist or could exist with some not very labor intensive
modifications.

This document is not for the makers of the predatory FOSS projects
mentioned above. This is for the many FOSS makers that seem to have no
visible/obvious bait profit motive, that have an enthusiasm for openness,
and that have a genuine desire to make the world a better place. It's here to
make explicit the things they accidentally/thoughtlessly omit/misprioritize.

We hope that this document inspires the creation of many FRTs right from
the start, independent evolution of FOSS projects into FRTs driven by their
developers, and also such evolution driven by user request.

Are the requirements stated herein more work for creators? Quite possibly
though many FOSS projects are much closer than they think to being FRTD
compliant and only need to make minor corrections.

Aren't implementors already often horribly badly overworked,
underresourced, and sadly stuck dealing with entitled users? Very much yes.
Sadly the primary author is ashamed to have been one of them at points in
the past.

So why then should FOSS projects aim for FRTD compliance when they
have limited resources to invest? Often when one has limited resources and
a big vision they wish to execute the best use of those limited resources is
conducting activities that will bring in more resources until there are at least
sufficient resources for the situation at hand.

How do contributors to FOSS projects come about once they discover the
project by some means? They try meaningfully studying it beyond the
initial marketing fluff to see if it's suitable for their objectives whether
directly or with some reasonable amount of customization work. Then once
they've studied enough to meaningfully use the project and do so for a while
they get a deep gut feeling of its current behavior/workings and the a sense
of the gap between the desired behavior/workings. At that point they finally
know enough to contribute meaningful fixes that the project maintainers
would likely find useful and incorporate. After some time if there's a
consistent track record of contributions they themselves may be promoted
to a maintainer. This is what the FOSS contribution pipeline often looks
like.

Often what happens to this pipeline in non-FRT FOSS projects is that it gets
disrupted very early on by newcomers not being able to meaningfully
access/study the full Open Knowledge Set in a reasonably self sufficient
manner let alone use it, further develop it, and contribute those
developments back. FRTD compliance should be prioritized over other
often less important feature work because True Open Knowledge is the
meta feature that builds the community around a project and thus scales the
resources needed to develop all the other features. The alternative is a death
spiral of burnout once resources run out.

Open the knowledge and the builders will come.

