
That Fun Time I Made A New
OpenPGP Keypair, Got My
Public Key Signed By Richard
Stallman Himself, Deleted My
Only Copy Of The Private Key
The Next Day, And Used Crude
Forensics Techniques To
Recover The Lost Key
Material Four Days Later

by Georgiy Treyvus

$ whoami

+ technical generalist with
strong interests in math,
programming, data analysis,
and (cyber)security

+ specialist in web
automation, data collection,
reconnaissance, OSINT,
OPSEC, counterintelligence,
and offensive data analysis

Why OpenPGP These Days?

+ it’s still very widely
used for code signing

+ it’s still the least worst
option on fronts like having
a standardized, importable,
and exportable key format so
I can freely reinstall my OS

+ theoretically app agnostic

Why A New Keypair?

+ why not?

+ –-enable-large-rsa finally
worked without Fedora’s
version of GnuPG complaining
about being compiled without
--enable-large-secmem

Why A New Keypair?

+ significant gap between
the strengths of the public
key and symmetric ciphers

+ though not strictly
necessary after
CVE-2016-6313 it certainly
wouldn’t hurt either and my
last key was made just
before the issue was fixed

Why A New Keypair?

+ general paranoia

+ this one is differently
structured to work around a
bug in GnuPG

+ actually one of several
keypairs though we’ll only
be focusing on one of them
today

What Bug Is This?

+ it’s not possible to
protect the private key
material of the master key
and the various subkeys with
different passphrases

+ attempting to change the
passphrase for a specific
subkey or set of subkeys
changed it for all subkeys

Ramifications

+ this severely limits one’s
ability to compartment, and
do damage control in case of
compromise

+ happily some benefits of
having separate subkeys
still remain such as safety
from certain classes of
cross protocol attacks

My Workaround

= long term identity key
 = keysigning key
 = casual encryption
 and signing key(s)
 = longish term message
 signing key(s)
 = isolated/compartmented
 key(s) for operations
 where pseudonymity is
 not needed or wanted

About My Threat Model

+ What if I get compromised
and my attacker then has a
way to log keystrokes, read
my files, or even arbitrary
bytes of disk or memory?

+ Given my OpenPGP usage
patterns what can I do to
minimize the impact of such
a compromise?

About My Threat Model

+ I decrypt messages often.

+ I sign messages rarely
contra the bad advice of
most OpenPGP tutorials. I’m
generally fine without proof
I said whatever dumb thing.

+ I sign keys probably even
more rarely than messages.

About My Threat Model

+ To compromise a (sub)key
the attacker needs either
the raw private key material
exposed in memory or the
encrypted private key file
contents and passphrase.

+ Because I decrypt often my
encryption subkey would get
stolen relatively instantly.

About My Threat Model

+ I can go weeks/months
without signing messages or
keys so stealing those
(sub)keys will take time.

+ If I later detect a
compromise by some means
likely it will only be
partial and I can then take
steps to recover.

About My Threat Model

+ For instance I can scrub
my compromised machine for
some appropriate definition
of scrub.

+ Alternatively I can work
with the backed up key
material on a totally
separate and hopefully not
compromised computer.

About My Threat Model

+ Ultimately once I’m at a
safe computer I can for
example revoke and replace a
compromised encryption
(sub)key.

+ My signing subkey and
master key would still be
safe enough.

About My Threat Model

+ Yes my attacker has an
encrypted copy of my other
private key material they
didn’t yet steal.

+ Still I’m not too worried.

+ I can choose brutishly
strong passphrases with 40+
well diversified characters.

About My Threat Model

+ Now these passphrases
aren’t truly random due to
my poor (even for a human)
memory.

+ Still I believe I can fake
randomness well enough that
I’m not too concerned.

About My Threat Model

The ultimate goal here is to
be able to potentially
recover from a reasonably
significant compromise
without having to generate
totally new keys and do the
whole fingerprint
verification dance with all
my cryptobuddies over the
phone, in person, etc.

About My Threat Model

+ My threat model is
predicated on me being able
to discover that I am
compromised.

+ Furthermore it assumes
that I can reliably put an
upper bound on how long ago
the compromise occurred.

About My Threat Model

+ assumes ability to
remember or determine last
time given subkeys were used

+ not a perfect or even
realistic threat model in
many senses

+ still compares relatively
well with others I’ve heard

Let’s Open Pandora’s Box...

+ having made a new keypair
in a hurry it was well past
time to actually back it up
especially in light of the
new developments

+ but first some tests to
make sure all was in order
and further secure my setup
so I back up a good state...

Why Test? Don’t I Trust GPG?

+ not particularly

+ it’s hardly the only tool
with a poor, confusing, and
brain hostile user interface
but...

+ there’s a VERY LARGE gap
between GnuPG’s perceived
and actual state/behavior

Why Test? Don’t I Trust GPG?

Pop Quiz! Which of the below
keys is stronger?

pub rsa8192 2018-10-25 [SCEA] [expires: 2019-10-25]
 2515BFC828FFEF899722F72804DC88CF8647510A
uid [ultimate] Kubra Balik

pub rsa8192 2018-10-25 [SCEA] [expires: 2019-10-25]
 B0E955E53E9818B3D8CC17AF8E296A711A5FB808
uid [ultimate] Aydin Bayat

(They may look the same but
I promise you they’re not.)

Upon Taking A Closer Look

gpg> showpref
[ultimate] (1). Kubra Balik
 Cipher: AES256, AES192, AES, 3DES
 Digest: SHA512, SHA384, SHA256, SHA224, SHA1
 Compression: ZLIB, BZIP2, ZIP, Uncompressed
 Features: MDC, Keyserver no-modify

gpg> showpref
[ultimate] (1). Aydin Bayat
 Cipher: 3DES
 Digest: SHA1
 Compression: ZIP, Uncompressed
 Features: MDC, Keyserver no-modify

Gap of 80+ bits of security!

Hence My Tests Involved

+ seeing if I could import
and export my various keys

+ creating, certifying, and
verifying signatures on
various dummy keys

+ removing ~/.gnupg between
rounds of tests for a clean
slate which had consequences

Thickening The Plot A Bit

+ I’d inadvertently deleted
~/.gnupg/openpgp-revocs.d

+ ordinarily this would be
fine as I usually manage my
revocation certificates
myself by other means which
are more robust to things
like OS reinstalls

Thickening The Plot A Bit

+ however in this case it
wasn’t

+ I didn’t generate seperate
revocation certificates due
to the hurry I was in making
my keys before HOPE

+ hence leaving me no way to
revoke the soon deleted key

How I Deleted My Private Key

+ I was trying to harden my
setup to what I felt was the
optimal state before backing
up my keys.

+ With OpenPGP private key
data is usually protected
using some symmetric
algorithm whose key is
derived from the passphrase

How I Deleted My Private Key

+ I wanted to protect the
key material with 256 bit
Camellia which I felt was
the best symmetric cipher
OpenPGP supported and felt
it to be safer than the
default of 128 bit AES.

+ also to optimize the other
key derivation parameters

How I Deleted My Private Key

+ hence I ran
--export-secret-keys with
the strictest –-s2k-*
parameters

+ HOWEVER the private key
material for my long term
identity key wasn’t in
GnuPG’s working keyring at
that moment.

How I Deleted My Private Key

+ Obviously GnuPG couldn’t
export private key material
it didn’t have.

+ It should have halted
immediately and complained
that it couldn’t export what
it didn’t have.

How I Deleted My Private Key

+ instead GnuPG deleted my
only copy of the private key
file which I was trying to
overwrite via -–output

+ given my threat model
exporting to a new file,
then using shred on the old
would have been safer but I
was kind of lazy here :-(

How I Deleted My Private Key

+ yes I was shown a warning
about overwriting it

+ still that warning didn’t
concern me much and I’d said
yes to it before

+ for example when
(re)exporting my private key
after changing my passphrase

How I Deleted My Private Key

+ hence I entered y at the
prompt as it was totally
safe to do based on all my
previous experience

+ this time was different

+ after I ran the export GPG
warned that no private key
material had been exported

How I Deleted My Private Key

 WELL

 THAT

 SURE

 WAS

 OMINOUS

How I Deleted My Private Key

+ So I decided to check on
it and sure enough my only
copy of the private key was
gone!

+ I was pretty sure I didn’t
have a chance to back up
what I had but checked my
external hard drive anyway.
No luck.

Depression Set In...

+ and hoo boy, did it really
make itself comfortable...

+ I thought I was doomed.

+ I began writing a
postmortem about my mistakes
and the insane behavior of
GnuPG that I wanted to post
to my Diaspora profile.

What Now?

+ I had no cryptographic
means to revoke the key but
thought of weakening its
cryptographic standing via
social means

+ for example by contacting
signatories and asking them
to revoke their signatures

But...

+ admitting defeat publicly
was embarrassing

+ and allegedly forensics
people recover deleted data
all the time...

+ so why not try?

+ rumor is I’m technical...

So Next

+ I unmounted my data volume
which held the deleted key
file, something which I
should frankly have done
immediately.

+ Sadly it was only a few
hours after the incident
that I started thinking
clearly enough to do that.

+ I was extremely lucky here
because I had a data
partition instead of a
partition for /home which is
the more traditional setup
one usually sees.

+ Were my setup more
traditional for all I know
the private key data would
have been overwritten by say
Firefox caching favicons...

Failed Recovery Attempt 1

+ after some research I
learned about extundelete

+ which would have done
exactly what I needed

+ if only it didn’t segfault
every time I ran it :-(

Failed Recovery Attempt 1

+ What if the size of some
system specific data
structure changed or somehow
differed from what Fedora’s
packaged version assumed?

+ Will extundelete work if I
recompile it?

+ I couldn’t recompile it.

Failed Recovery Attempt 1

+ I tried to get to the
bottom of why and fix it

+ ultimately gave up after
wrestling with the code for
a few hours

Failed Recovery Attempt 2

+ I reached out to my friend
Jay Michael Roberts a
computer forensics expert.

+ He recommended CAINE
(Computer Aided
Investigative Environment)
Live DVD

+ So I gave it a spin...

Failed Recovery Attempt 2

+ There’s loads of
functionality there but how
to discover what I need?

+ one of the third party
manuals mentioned on their
site introduced me to TSK
(The Sleuth Kit)

Failed Recovery Attempt 2

+ Had the deleted key file
been on an ext2 filesystem a
combination of istat, and
icat commands would work.

+ Sadly this was ext4 which
works differently and clears
direct block data from
inodes upon file deletion.

Enter The Great Epiphany...

+ Unfortunately ext4 is not
friendly to file recovery
using filesystem metadata.

+ But I realized I was
dealing with data that had
some well structured parts.

+ This could be used to
great advantage... :-) :-D

Private Key File Structure

Usually they’re exported in
armored ASCII format so:

-----BEGIN PGP PRIVATE KEY BLOCK-----
<private key material here>
-----END PGP PRIVATE KEY BLOCK-----

And odds are good my 8K
keyfile was small enough to
be stored contiguously...

SO PEANUT BUTTER REGEX TIME?

Maybe...

Problems

+ I’m well versed in the
theory behind regular
languages, finite automata,
and all that good stuff.

+ I use regexes in my
programs on rare occasions.

+ But I’m not gonna lie, I’m
not that good at them.

Problems

+ My main problem with
regexes is that they are
cryptic and hard to read.

+ Maybe I’d use them more
often given a friendlier
interface in the form of
tested, robust, mature, and
widespread combinator
libraries or something...

Problems

+ As the joke goes a senior
programmer is one who knows
how to use regexes but has
the wisdom not to.

+ As JWZ said you have a
problem, you decide to use
regexes, then you have two
problems.

Problems

+ this would require a very
convoluted regex at the
baseline

+ compounded further by the
fact that after the dashed
begin line there could be
various optional headers
that could contain almost
any characters.

Problems

+ is whatever regex engine
I’d be using in single line
mode or multiline mode?

+ null characters/bytes
could be problematic to some
tools/libraries

+ many tools aren’t built
for arbitrary binary data

Problems

+ lots of libraries/tools
take a string as input and
have no easy, obvious, or
sane way to stream the 450G
of my data volume to them as
input

+ regexes are greedy by
default

Insane Solutions Considered

+ I needed to chug through a
lot of data fast so I
thought maybe to use C++’s
new <regex> library

+ upon looking up the docs
my computer shut down to
avoid permanent damage

+ file I/O is bottleneck

The Real Hero Of This Story

+ is without a shadow of a
doubt my friend Paul Backus

+ without him this story
would quite likely have a
very different ending

The Real Hero Of This Story

+ Paul is an absolute
systems programming
powerhouse well on his way
to being the next Andrei
Alexandrescu or Graydon
Hoare.

+ I exaggerate only slighty
when I say he taught me all
I know on good engineering.

The Real Hero Of This Story

+ he helped me stay calm

+ he was a great person to
bounce various ideas off and
unlike me was/is both
rational and clearheaded

+ we considered various
solutions from regexes to
custom retrieval programs

The Real Hero Of This Story

+ It was Paul who came up
with the solution that
ultimately worked...

+ and boy was it AWKward

+ so it was time to release
the krAWKen!

+ but not my other bad jokes

The Solution That Worked

+ cat
/dev/mapper/logical_volumes-
data_volume | LC_ALL=C awk
'/-----BEGIN PGP PRIVATE KEY
BLOCK-----/,/-----END PGP
PRIVATE KEY BLOCK-----/' > /
home/georgiy/RECOVERED_STUFF
_LC_ALL_SET_TO_C

+ then postprocess with Vim

The Rocky Home Straightaway

+ passing the raw device
file corresponding to my
data volume as an argument
to awk in the normal way
didn’t work for some reason

+ awk couldn’t open the
device file even though I
was root, I had to stream
via cat as a workaround

The Rocky Home Straightaway

+ Next came the finicky
process of manually removing
the binary cruft at
beginning of the key block
start lines from a defensive
copy of the recovered data.

+ So I dove in with Vim and
then fed the result of that
to gpg2 –-import

The Rocky Home Straightaway

+ GnuPG wasn’t able to parse
out the key material of the
lost key

+ I was disappointed and
again was within a hair of
giving up

The Rocky Home Straightaway

+ but I’m very stubborn

+ and knew with Vim it’s
very easy to screw up

+ also even if I somehow
don’t screw up Vim still
might

The Rocky Home Straightaway

:for x in [1,2,3,4]
: echo x
1
: endfor
2
3
4

Need I say more?

The Rocky Home Straightaway

I’ve honestly lost count of
how often I forgot I was in
normal mode instead of
insert, typed some keys,
found a (subtly) garbled
screen and then didn’t even
know how many times to press
u to return to a good state
as I didn’t quite remember
what it even looked like.

The Rocky Home Straightaway

+ In light of how finicky
the whole cleaning process
was and how reliably I make
mistakes I thought I’d try
again and be more careful.

+ To this day I’m not
entirely sure what I did
right this time around but
the import worked.

VICTORY!!!!!!!!!!!!!!!!!!!!!

+ I can’t even begin
describing my feeling when
prompted for my long term
identity key’s passphrase.

+ Further testing that
involved signing/certifying
and verifying the signatures
on dummy keys confirmed the
recovery was successful!

VICTORY!!!!!!!!!!!!!!!!!!!!!

+ Thus concludes the story
of my first file carving
adventure as this technique
is known in the world of
digital forensics.

+ I’m hoping to do a lot
more of it out of curiosity
and not necessity in the
future.

Alternative Approaches

+ At the time I didn’t know
about grep’s -a and -b
options. Combining them
would have given me
interesting byte offsets to
try inspecting in say Vim
and then copy pasting...

+ grep -ao may also have
worked aside from greediness

Alternative Approaches

+ maybe that could also be
worked around with GNU
grep’s experimental -P
option

+ or not as grep is line
based...

Best Alternative Approach

In retrospect a custom
program to read 32K from
every offset with the key
block start characters to
temp files. Sure this may
have pulled in some cruft at
the end but that doesn’t
matter. --import will still
successfully parse the
result before crashing.

Takeaways

+ Sometimes shockingly dumb
ramshackle techniques work
better than the
smart/professional ones.

+ Back up important stuff as
soon as possible even if
it’s not in the ideal state.
Yes GnuPG was stupid but I
was stupider. Period.

Takeaways

+ OpenPGP has hope if they
update their specs to get
rid of historical cruft.

+ GnuPG (and the garbage
built on top of it) is
utterly doomed.

+ don’t even get me started
on pEp...

(Hot) Takeaways

+ I’m not necessarily saying
to roll your own crypto but
given how low the bar is
it’s getting pretty hard to
see how we could do worse.

+ don’t get cocky, but do
question the crypto elitism

+ seriously get involved

(Hot) Takeaways

+ This fiasco, heartbleed,
the libssh bug, etc, are all
indicative of an inability
to handle basic business
logic let alone correctly
reason about cache timing
side channels or whatever.
And that usability thing...

+ We need a new guard.

(Hot) Takeaways

+ Maybe it’s already here.
OpenBSD’s built and deployed
signify to help assure the
integrity of their releases.
The sky hasn’t fallen.

+ Ted Unangst’s reop also
looks like a promising
alternative solution in
OpenPGP’s problem space

Thanks To:

Jay Michael Roberts

MASSIVE Thanks To:

Paul Backus

QED

+ questions

+ comments

+ book/movie deals

+ consulting opportunities

