That Fun Time I Made A New
OpenPGP Keypair, Got My
Public Key Signed By Richard
Stallman Himself, Deleted My
Only Copy Of The Private Key
The Next Day, And Used Crude
Forensics Techniques To
Recover The Lost Key
Material Four Days Later

by Georgiy Treywvus

S whoami

+ technical generalist with
strong 1nterests 1n math,
programming, data analysis,
and (cyber)security

+ specialist 1n web
automation, data collection,
reconnaissance, OSINT,
OPSEC, counterintelligence,
and offensive data analysis

Why OpenPGP These Days?

+ 1t’s still very widely
used for code signing

+ 1t’s sti1ll the least worst
option on fronts like having
a standardized, 1mportable,

and exportable key format so
I can freely reilnstall my OS

+ theoretically app agnostic

Why A New Keypair?
+ why not?

+ ——enable-large—-rsa finally
worked without Fedora's
version of GnuPG complalning
about belng compiled without
——enable-large—secmem

Why A New Keypair?

+ significant gap between
the strengths of the public
key and symmetric ciphers

+ though not strictly
necessary after
CVE-2016-6313 1t certalnly
wouldn’t hurt either and my
last key was made just
before the 1ssue was fixed

Why A New Keypair?
+ general paranoila

+ this one 1s differently
structured to work around a
bug 1n GnuPG

+ actually one of several
keypalrs though we’ll only
be focusing on one of them
today

What Bug Is This?

+ 1t’s not possible to
protect the private key
material of the master key
and the various subkeys with
different passphrases

+ attempting to change the
passphrase for a specific
subkey or set of subkeys

changed 1t for all subkeys

Ramifications

+ this severely limits one’s
ability to compartment, and
do damage control 1n case of
compromilise

+ happily some benefits of
having separate subkeys
st1ll remalin such as safety
from certain classes of
Cross protocol attacks

My Workaround

= long term 1dentity key
key51gnlng key

casual encryption

and signing kevy (s)
longish term message
signing key (s)
isolated/compartmented
key (s) for operations
where pseudonymity 1S
not needed or wanted

About My Threat Model

+ What 1f I get compromised
and my attacker then has a
way to log keystrokes, read
my files, or even arbitrary
bytes of disk or memory?

+ Given my OpenPGP usage
patterns what can I do to
minimize the i1mpact of such
a compromise?

About My Threat Model

+ 1 decrypt messages often.

+ I si1gn messages rarely
contra the bad advice of

most OpenPGP tutorials. I'm

generally fine without proof
I said whatever dumb thing.

+ I sign keys probably even
more rarely than messages.

About My Threat Model

+ To compromise a (sub)key
the attacker needs eilther
the raw private key material
exposed 1n memory oOr the
encrypted private key file
contents and passphrase.

+ Because I decrypt often my
encryption subkey would get
stolen relatively 1nstantly.

About My Threat Model

+ I can go weeks/months
without signing messages or
keys so stealling those
(sub)keys will take time.

+ If I later detect a
compromlse by some means
likely 1t will only be
partial and I can then take
steps to recover.

About My Threat Model

+ For i1nstance I can scrub
my compromlsed machiline for
some appropriliate definition

of scrub.

+ Alternatively I can work
with the backed up key
material on a totally
separate and hopefully not
compromlsed computer.

About My Threat Model

+ Ultimately once I'm at a
safe computer I can for
example revoke and replace a
compromlised encryption

(sub) key.

+ My signing subkey and
master key would sti1ll be
safe enough.

About My Threat Model

+ Yes my attacker has an
encrypted copy of my other
private key material they
didn’t yet steal.

+ Sti1ll I'm not too worriled.
+ I can choose brutishly

strong passphrases with 40+
well diversified characters.

About My Threat Model

+ Now these passphrases
aren’t truly random due to
my poor (even for a human)
memory.

+ Sti1ll I believe I can fake
randomness well enough that
I'm not too concerned.

About My Threat Model

The ultimate goal here 1s to
be able to potentially
recover from a reasonably
significant compromise
without having to generate
totally new keys and do the
whole fingerprint
veriflication dance with all
my cryptobuddies over the
phone, 1n person, etc.

About My Threat Model

+ My threat model 1s
predicated on me beilng able
to discover that I am
compromilsed.

+ Furthermore 1t assumes
that I can reliably put an
upper bound on how long ago
the compromilise occurred.

About My Threat Model

+ assumes ability to
remember or determine last
time given subkeys were used

+ not a perfect or even
realistic threat model 1n
many senses

+ sti1ll compares relatively
well with others I’ve heard

Search results for
'0x0fb361e9886cHc77'

Type bits/keyID cr. time exp time key expir

pub 8192R/886C5C77 2018-07-20
Fingerprint=7703 3539 7398 F34F 306A (085 OFB3 61E9 886C 5C77

uid Georgiy Treyvus (UID for me as a person not tied to any particular email. This is my long tel

sig sig3 886C5C77 2018-07-20 2035-07-16 [selfsig]

sig sig3 B1D88291 2018-07-22 Sidney San Martin (Born 1989-7-1 in San Frat
sig sig 89420B8E 2018-07-22 Steve Kent <sjk@dredel.com>

sig sig 7CB91658 2018-07-22 Steve Kent <sjk@onshore.com>

sig sig3 F33E3A61 2018-07-23 Georgiy Treyvus (UID for me as a person not
sig sig 2A8E4C02 2018-07-24 Richard Stallman <rms@gnu.org> \

sig sig CFE594B9 2018-10-02 Chris Pick <pgp@chrispick.com>

sig sig3 41F5A98E 2018-10-19 Chris Ruvolo <cruvolo@gmail.com>

Richard Stallman's personal site.

https://stallman.or

For current political commentary, see the daily political notes.

RMS' Bio | The GNU Project

I'm told that key servers carry many phony keys claiming to be mine. Here is info about which keys are really mine.

Old key (don't use it nowadays)

pub 1024D/135EAG668 2001-03-05
uid Richard Stallman (Chief GNUisance) <rms@gnu.org=>
sub 18024g9/B1B10ED6 2001-83-05

New kev

pub 4096R/2C6464AF2A8E4C02 2013-07-20

Key fingerprint = 6781 9B34 3B2A B70D ED93 2087 2C64 64AF 2A8E 4CB2 8
uid Richard Stallman <rms@gnu.org=>
sub 4096R,/2F30A2E162853425 2013-07-20

Of course, to be really sure which key is mine, you need to get my key fingerprint from me or follow a chain of signatures. If a phony
key appears to be signed by someone you trust, you should see what's up with that person.

If you want an encrypted response, you must send me your key, because I don't use key servers. I don't promise to keep it permanently
if we don't talk often, so if you talk with me again a year later you should send it again.

Copyright (c) 2013 Richard Stallman Verbatim copying and redistribution of this entire page are permitted provided this notice is
preserved.

Search results for '0x2c6464af2a8e4c02'

Type bits/keyID cr. time exp time key expir

pub 4096R/2ABE4ACEZ 2013-07-20
Fingerprint=6781 9834 3BZA B70D ED93 2087 2064 64AF 2ABE 4C02

uid Richard Stallman <rms@gnu.org=

sig sig3 2ABE4CAZ 2013-07-20 [selfsig]

sig sig 135EAG68 2013-07-20 Richard Stallman (Chief GNUisance) <rms@gnu.org=

sig sig G9BOO3EF 2013-08-20 Ralph Holz TUM <holz@net.in.tum.de>

sig sig 135047A1 2013-08-29 Ira Abramov (Free Tinkerer) <pgpkey2@09@ira.abramov.orgs
sig sig F7B8F3EE4 2013-08-29 Ira Abramov <pgpkey-20020101@ira.abramov.org=

sig sig B9D0OAF41 2013-08-29 Ira Abramov (Email/Insecure key) <GnuPGmail-2013@ira.abramov.orgs
sig exp3 0371FCES5S 2013-09-15 2017-89-15 a

sig sig 22247CDF 2013-09-24 Profpatsch <mail@profpatsch.de=

sig sig EAEDO78A 2013-09-24 a

sig sig FE254C69 2013-09-28 Keith Winstein <keithw@mit.edu=

sig sig BO7C2A87 2013-09-28 Paul Tagliamonte <tag@pault.ag=

sig sig 7562C516 2013-09-29 Mark H Weaver <mhw@netris.org=

sig sig AEG87291 2013-09-29 Colin Walters <walters@redhat.com=

sig sig BSE4C71A 2013-09-30 Philip Patsch <privat@profpatsch.de>

sig sig BACD372A 2013-10-02 Zooko Wilcox-0'Hearn (Founder) <zooko@leastAuthority.com=
sig sig2 234CC324 2013-10-03 Chris Jester-Young <cky@cky.nz>

sig sig D7E69871 2013-10-04 Daiki Ueno <ueno@gnu.org>

sig sig2 23F62336 2013-10-12 Sascha Mester <sascha.mester@gmx.de=>

sig sig BO7C2A87 2013-10-18 Paul Tagliamonte <tag@pault.ag>

sig sig3 5310523C 2013-10-23 Rafael Bonifaz (Activista del software libre) <rafael@bonifaz.ec>
sig sig 17A4CDIC 2013-10-25 Nicolds Reynolds <fauno@kiwwwi.com.ar>

sig sig 1COEO17F 2013-11-02 Tom Mason <wheybags@wheybags . com=

sig sig 7FBFED8G 2013-11-04 Donncha 0'Cearbhaill <donncha@donncha.is>

sig sig 1F435A33 2013-11-14 Paul Hardy =unifoundry@gmail .com=

sig sig (CBD918DY 2013-12-11 Santiago Saavedra <ssaavedra@gpul.org>

sig sig 3ED41341 2013-12-13 Alberto Garcia <berto@igalia.com=

sig sig B39ACDFE 2014-01-07 Jose Maria Casanova Crespo (Chema) <jmcasanova@igalia.coms
sig sig B304AF08 2014-01-22 Jose E. Marchesi <jemarch@gnu.org=

sig sig G4DOEEB6 2014-083-12 Krista Grothoff (Me) <krista@kgrothoff.org=

sig sig A5493553 2014-03-12 Krista Bennett <krista@darthmama.org=

sig sig 1CA24A13 2014-03-12 Hellekin 0. Wolf <hellekin@cepheide.org=

sig sig 7OE3COOE 2014-03-26 Sascha Mester <webmaster@gnuware.de=

sig sig 32388E27 2014-03-26 Sascha Mester (Neuer Schliissel) <sascha.mester@gmx.de>
sig sig 590D026ES 2014-04-20 Marko Silluste <marko.silluste@hot.ee=

sig sig Z9AEFC28 2014-04-26 Rubén Rodriguez Pérez <ruben@es.gnu.orgs

sig sig3 B3B22268 2014-04-29 alexskc <alexskc@autistici.org>

sig sig SEAOASFB 2014-05-13 Chu-Hsiang Lai <chusiang@drx.tw>

sig sig 442CB088 2014-05-25 Eclipse Spark (Lorenzo Faletra) <eclipse@frozenbox.org>

sig sig3 A6D42018 2014-06-02 Tong Hui <tonghuix@gmail . com=

Let’s Open Pandora’s Box. ..

+ having made a new keypailr
1n a hurry 1t was well past
time to actually back 1t up
especlally 1n light of the
new developments

+ but first some tests to
make sure all was 1n order
and further secure my setup
so I back up a good state...

Why Test? Don’t I Trust GPG?
+ not particularly

+ 1t’s hardly the only tool

with a poor, confusing, and

brain hostile user interface
but...

+ there’s a VERY LARGE gap
between GnuPG’'s perceived
and actual state/behavior

Why Test? Don’t I Trust GPG?

Pop Quiz! Which of the below
keys 1s stronger?

pub

uid

pub

uid

rsa8192 2018-10-25 [SCEA] [expires: 2019-10-25]
2515RBRFC828FFEF899722F72804DC88CEF8647510A
[ultimate] Kubra Balik

rsa8l192 2018-10-25 [SCEA] [expires: 2019-10-25]
BOE955E53E9818B3D8CCL17AF8E2906A711A5FB80S8
[ultimate] Aydin Bayat

(They may look the same but
I promise you they’re not.)

Upon Taking A Closer Look

gpg> showpref

[ultimate] (1). Kubra Balik
Cipher: AES256, AES192, AES, 3DES
Digest: SHA512, SHA384, SHA256, SHA224, SHAI1
Compression: ZLIB, BZIP2, ZIP, Uncompressed
Features: MDC, Keyserver no-modify

gpg> showpref
[ultimate] (1). Aydin Bayat
Cipher: 3DES
Digest: SHAL
Compression: ZIP, Uncompressed
Features: MDC, Keyserver no—-modify

Gap of 80+ bits of security!

Hence My Tests Involved

+ seelng 1f I could 1import
and export my various keys

+ creating, certifying, and
verifying signatures on
various dummy keys

+ removing ~/.gnupg between
rounds of tests for a clean
slate which had consequences

Thickening The Plot A Bit

+ I'd 1nadvertently deleted
~/ .gnupg/openpgp—-revocs.d

+ ordinarily this would be
fine as I usually manage my
revocation certificates
myself by other means which
are more robust to things
li1ke OS reinstalls

Thickening The Plot A Bit

+ however 1n this case 1t
wasn’t

+ I didn’t generate seperate
revocation certificates due

to the hurry I was 1n making
my keys before HOPE

+ hence leaving me no way to
revoke the soon deleted key

How I Deleted My Private Key

+ I was trylng to harden my

setup to what I felt was the
optimal state before backing
up my keys.

+ With OpenPGP private key
data 1s usually protected
uslilng some symmetric
algorithm whose key 1s
derived from the passphrase

How I Deleted My Private Key

+ I wanted to protect the
key material with 256 bit
Camellia which I felt was
the best symmetric cilpher
OpenPGP supported and felt
1t to be safer than the

default of 128 bit AES.

+ also to optimize the other
key derivation parameters

How I Deleted My Private Key

+ hence I ran
——export—secret-keys with
the strictest —--s2k-*%
parameters

+ HOWEVER the private key
material for my long term
ldentity key wasn’t 1n
GnuPG’s working keyring at
that moment.

How I Deleted My Private Key

+ Obviously GnuPG couldn’t

export private key material
1t didn’t have.

+ It should have halted
immediately and complained

that 1t couldn’'t export what
1t didn’t have.

How I Deleted My Private Key

+ 1nstead GnuPG deleted my
only copy of the private key
file which I was trying to
overwrlite via —-output

+ given my threat model
exporting to a new file,
then using shred on the old
would have been safer but 1
was kind of lazy here :—(

How I Deleted My Private Key

+ yes I was shown a warniling
about overwriting 1t

+ sti1ll that warning didn’t
concern me much and I’d said
ves to 1t before

+ for example when
(re)exporting my private key
after changlng my passphrase

How I Deleted My Private Key

+ hence I entered y at the
prompt as 1t was totally
safe to do based on all my
previous experilience

+ this time was different
+ after I ran the export GPG

warned that no private key
material had been exported

How I Deleted My Private Key

WELL

THAT

SUR!

L]

WAS

OMINOUS

How I Deleted My Private Key

+ So I decided to check on
1t and sure enough my only
copy of the private key was
gone'!

+ I was pretty sure I didn’t
have a chance to back up
what I had but checked my
external hard drive anyway.
No luck.

Depression Set In...

+ and hoo boy, did 1t really
make 1tself comfortable...

+ I thought I was doomed.

+ I began writing a
postmortem about my mistakes
and the 1nsane behavior of
GnuPG that I wanted to post
to my Diaspora profile.

What Now?

+ I had no cryptographic
means to revoke the key but
thought of weakening 1ts
cryptographic standing via
soclal means

+ for example by contacting
signatorles and asking them
to revoke theilir signatures

But. ..

+ admitting defeat publicly
was embarrassing

+ and allegedly forensics
people recover deleted data
all the time...

+ so why not try?

+ rumor 1s I'm technical...

So Next

+ I unmounted my data volume
which held the deleted key
file, something which T
should frankly have done
immediately.

+ Sadly 1t was only a few
hours after the i1ncident
that I started thinking
clearly enough to do that.

+ I was extremely lucky here
because I had a data
partition 1nstead of a
partition for /home which is
the more traditional setup
one usually sees.

+ Were my setup more
traditional for all I know
the private key data would
have been overwritten by say
Firefox caching favicons...

Failed Recovery Attempt 1

+ after some research 1
learned about extundelete

+ which would have done
exactly what I needed

+ 1f only 1t didn’t segfault
every time I ran 1t :—(

Failed Recovery Attempt 1

+ What 1f the size of some
system specific data
structure changed or somehow
differed from what Fedora’s
packaged version assumed?

+ Wi1ill extundelete work 1f T
recomplile 1t?

+ I couldn’'t recompile 1t.

Failed Recovery Attempt 1

+ I tried to get to the
bottom of why and fix 1t

+ ultimately gave up after
wrestling with the code for
a few hours

Failed Recovery Attempt 2

+ I reached out to my friend
Jay Michael Roberts a
computer forensics expert.

+ He recommended CATIN]

L]

(Computer Aided

Investigative
Live DVD

Environment)

+ So I gave 1t a spiln...

Failed Recovery Attempt 2

+ There’'s loads of
functilionality there but how
to discover what I need?

+ one of the third party
manuals mentioned on their
site i1ntroduced me to TSK
(The Sleuth Kit)

Failed Recovery Attempt 2

+ Had the deleted key file
been on an extZ filesystem a
comblnation of 1stat, and
l1cat commands would work.

+ Sadly this was ext4 which
works differently and clears
direct block data from
1nodes upon file deletion.

Enter The Great Epiphany...

+ Unfortunately ext4 1s not
friendly to file recovery
using filesystem metadata.

+ But I realized I was
dealing with data that had
some well structured parts.

+ This could be used to
great advantage... :—) :-D

Private Key File Structure

Usually they’re exported 1n
armored ASCITI format so:

And odds are good my 8K
keyfile was small enough to
be stored contiliguously...

SO PEANUT BUTTER REGEX TIME?

Maybe. ..

Problems

+ I'm well versed 1n the
theory behind regular
languages, finite automata,
and all that good stuftf.

+ 1 use regexes 1n my
programs On rare occaslions.

+ But I’m not gonna lie, I'm
not that good at them.

Problems

+ My maln problem with
regexes 1s that they are
cryptic and hard to read.

+ Maybe I'd use them more
often given a friendlier
interface 1n the form of
tested, robust, mature, and
wldespread combinator
libraries or something...

Problems

+ As the joke goes a senior
programmer 1S one who knows
how to use regexes but has
the wisdom not to.

+ As JWZ said you have a
problem, you decide to use
regexes, then you have two
problems.

Problems

+ this would require a very
convoluted regex at the
baseline

+ compounded further by the
fact that after the dashed
begin line there could be
various optional headers
that could contain almost
any characters.

Problems

+ 1s whatever regex engine
I'd be using 1n single line
mode or multiline mode?

+ null characters/bytes
could be problematic to some
tools/libraries

+ many tools aren’t built
for arbitrary binary data

Problems

+ lots of libraries/tools
take a string as 1nput and
have no easy, obvious, or
sane way to stream the 450G
of my data volume to them as
input

+ regexes are greedy by
default

Insane Solutions Considered

+ 1 needed to chug through a
lot of data fast so I
thought maybe to use C++'s
new <regex> library

+ upon lookiling up the docs
my computer shut down to
avold permanent damage

+ file I/0 is bottleneck

The Real Hero Of This Story

+ 1s without a shadow of a
doubt my friend Paul Backus

+ without him this story
would quite likely have a
very different ending

The Real Hero Of This Story

+ Paul 1s an absolute
systems programming
powerhouse well on his way
to belng the next Andrel
Alexandrescu or Graydon
Hoare.

+ I exaggerate only slighty
when I say he taught me all
I know on good engilneering.

The Real Hero Of This Story
+ he helped me stay calm

+ he was a great person to
bounce wvarious 1deas off and
unlike me was/is both
rational and clearheaded

+ we consldered various
solutions from regexes to
custom retrieval programs

The Real Hero Of This Story
+ It was Paul who came up
with the solution that
ultimately worked...

+ and boy was 1t AWKward

+ so 1t was time to release
the krAWKen!

+ but not my other bad jokes

The Solution That Worked

+ cat
/dev/mapper/logical volumes-
data_volume | LC_ALL=C awk

' [————— BEGIN PGP PRIVATE KEY
BLOCK————— Yy — END PGP
PRIVATE KEY BLOCK————-— /v >/

home/georgiy/RECOVERED STUFF
~LC_ALL SET TO C

+ then postprocess with Vim

The Rocky Home Straightaway

+ passing the raw device
file corresponding to my
data volume as an argument
to awk 1n the normal way
didn’t work for some reason

+ awk couldn’t open the
device file even though T
was root, I had to stream
via cat as a workaround

The Rocky Home Straightaway

+ Next came the finicky
process of manually removing
the binary cruft at
beginning of the key block
start lines from a defensive
copy o0f the recovered data.

+ So I dove 1n with Vim and
then fed the result of that

to gpg2 ——import

The Rocky Home Straightaway

+ GnuPG wasn’'t able to parse
out the key material of the
lost key

+ I was disappointed and
agaln was within a hailir of
glving up

The Rocky Home Straightaway
+ but I'm very stubborn

+ and knew with Vim 1t's
very e€asy LTO screw up

+ also even 1f I somehow
don’t screw up Vim still
might

The Rocky Home Straightaway

:for x 1in [1,2,3,4]
: echo X
1

endfor

2
3
4

Need I say more?

The Rocky Home Straightaway

I"ve honestly lost count of
how often I forgot I was 1n
normal mode 1nstead of
insert, typed some keys,
found a (subtly) garbled
screen and then didn’t even
know how many times to press
u to return to a good state
as I didn't quite remember
what 1t even looked 1like.

The Rocky Home Straightaway

+ In light of how finicky
the whole cleaning process
was and how reliably I make
milstakes I thought I’'d try
agaln and be more careful.

+ To this day I'm not
entlrely sure what I did
right this time around but
the 1mport worked.

+ I can’t even begin

describing my feeling when
prompted for my long term
i1dentity key'’s passphrase.

+ Further testing that
involved signing/certifying
and verifyilng the signatures
on dummy keys confirmed the
recovery was successful!

+ Thus concludes the story
of my first file carving
adventure as this technique
1s known in the world of
digital forensics.

+ I'm hoping to do a lot
more of 1t out of curiosity
and not necessity 1n the
future.

Cowboys that ride off into the sunset quickly/run
nui 0f duyllght und huve"t '-'cump |ust nutmde

Alternative Approaches

+ At the time I didn’t know
about grep’s —a and -b
options. Comblning them
would have given me
interesting byte offsets to
try i1nspecting 1n say Vim
and then copy pasting...

+ grep —ao may also have
worked aside from greediness

Alternative Approaches

+ maybe that could also be

worked around with GNU
grep’s experimental -P
option

+ or not as grep 1s line
based. ..

Best Alternative Approach

In retrospect a custom
program to read 32K from
every offset with the key
block start characters to
temp files. Sure this may
have pulled 1n some cruft at
the end but that doesn’t
matter. ——1mport will still
successtully parse the
result before crashing.

Takeaways

+ Sometimes shockingly dumb
ramshackle techniques work

better than the
smart/professional ones.

+ Back up important stuff as
soon as possilible even 1f
1t’s not 1n the 1deal state.
Yes GnuPG was stupid but I
was stupider. Period.

Takeaways

+ OpenPGP has hope 1f they
update thelr specs to get
ri1d of historical cruft.

+ GnuPG (and the garbage
built on top of 1t) 1s
utterly doomed.

+ don’'t even get me started

1

on pkp...

(Hot) Takeaways

+ I'm not necessarily sayilng
to roll your own crypto but
glven how low the bar 1is
1t’s getting pretty hard to
see how we could do worse.

+ don’t get cocky, but do
question the crypto elitism

+ seriously get 1nvolved

(Hot) Takeaways

+ This fiasco, heartbleed,
the libssh bug, etc, are all
indicative of an 1nability
to handle basic business
logic let alone correctly
reason about cache timing
si1de channels or whatever.
And that usability thing...

+ We need a new guard.

(Hot) Takeaways

+ Maybe 1t’s already here.
OpenBSD’'s built and deployed
signify to help assure the
integrity of thelr releases.
The sky hasn’t fallen.

+ Ted Unangst’s reop also
looks like a promising
alternative solution 1n
OpenPGP’s problem space

Thanks To:

Jay Michael Roberts

MASSIVE Thanks To:

Paul Backus

QED

+ gquestions

+ comments

+ book/movie deals

+ consulting opportunities

